Human genes have numerous copy number variations (CNVs) and single-nucleotide polymorphisms (SNPs) that control most of the body's core functions. On average, 12-16 % of human genes have CNVs, and a single gene can have a few hundred to several thousand SNPs. Numerous genome-wide association studies (GWAS) have shown that CNVs and SNPs can coexist in certain genomic regions, amplifying their effects on gene expression and regulation and disease susceptibility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
Giant axonal neuropathy (GAN) is caused by mutations in the gene encoding for gigaxonin (GIG), which functions as an adaptor of the CUL3-RBX1-GIG (CRL3) E3 ubiquitin ligase complex. The pathological hallmark of GAN is characterized by the accumulation of densely packed neurofilaments (NFs) in the axons. However, there are fundamental knowledge gaps in our understanding of the molecular mechanisms by which the ubiquitin-proteasome system controls the homeostasis of NF proteins.
View Article and Find Full Text PDFLow-temperature processed SnO is a promising electron transporting layer in perovskite solar cells (PSCs) due to its optoelectronic advantage. Atomic layer deposition (ALD) is suitable for forming a conformal SnO layer on a high-haze substrate. However, oxygen vacancy formed by the conventional ALD process using HO might have a detrimental effect on the efficiency and stability of PSCs.
View Article and Find Full Text PDFThe initial introduction of utilizing double helix structural oligonucleotides known as SNP typing with excellent specificity (STexS) in a standard PCR greatly improved the detection of single nucleotide polymorphisms (SNP) by enhancing amplification rates of primer-matching strands and interrupting mismatched strands by constant instability of kinetics regarding alignment attaching and detaching. The model was beneficial overall in detecting SNP variants consisting of large amounts of wildtype strands such as EGFR mutation genotyping for early detection of non-small cell lung cancer. While the STexS PCR is advantageous in detecting SNPs and biomarkers, limitations were yet observed.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) have attracted tremendous interest due to their outstanding intrinsic photovoltaic properties, such as absorption coefficients, exciton binding energies, and long carrier lifetimes. Although the power conversion efficiency (PCE) of PSCs is close to the Si solar cells' PCE, device stability remains a challenge. In particular, the device stability is more critical in n-i-p normal structured PSCs, which show a higher efficiency than p-i-n inverted ones, simply because of the much lower stability of 2,2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spi).
View Article and Find Full Text PDFGenetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most common forms which related to various genetic disorders and cancers. Among of the methods developed for efficient detection of such SNP, polymerase chain reaction (PCR) methods are widely used worldwide for its cost and viable advantages. However, the technique to discriminate small amounts of SNP mixed in abundant normal DNA is incomplete due to intrinsic technical problems of PCR such as amplification occurring even in 3'mismatched cases because of high enzyme activity of DNA polymerases.
View Article and Find Full Text PDFDNA-methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used clinically to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Decitabine activates the transcription of endogenous retroviruses (ERVs), which can induce immune response by acting as cellular double-stranded RNAs (dsRNAs). Yet, the posttranscriptional regulation of ERV dsRNAs remains uninvestigated.
View Article and Find Full Text PDFNickel oxides (NiO) as hole transport layers (HTLs) in inverted-type perovskite solar cells (PSCs) have been widely studied mainly because of their high stability under illumination. Increases in the power conversion efficiency (PCE) with NiO HTLs have been presented in numerous reports, although the photoluminescence (PL) quenching behavior does not coincide with the PCE increase. The dynamics of the charge carrier transport between the NiO HTLs and the organic-inorganic halide perovskite absorbers is not clearly understood yet and quite unusual, in contrast to organic/polymerics HTLs.
View Article and Find Full Text PDFBreast cancer is one of the most frequently diagnosed cancers. Although biomarkers are continuously being discovered, few specific markers, rather than classification markers, representing the aggressiveness and invasiveness of breast cancer are known. In this study, we used samples from canine mammary tumors in a comparative approach.
View Article and Find Full Text PDFBreast cancer encompasses a major portion of human cancers and must be carefully monitored for appropriate diagnoses and treatments. Among the many types of breast cancers, triple negative breast cancer (TNBC) has the worst prognosis and the least cases reported. To gain a better understanding and a more decisive precursor for TNBC, two major histone modifications, an activating modification H3K4me3 and a repressive modification H3K27me3, were analyzed using data from normal breast cell lines against TNBC cell lines.
View Article and Find Full Text PDFChem Commun (Camb)
February 2019
Organic-inorganic hybrid metal halides are now the most attractive photovoltaic absorber materials, typically, methylammonium lead triiodides (MAPbI3). These unique semiconducting materials as absorbers demonstrate a remarkably improved power conversion efficiency of over 20% and now with a certified efficiency of 23.3%.
View Article and Find Full Text PDFHigh-efficiency planar type perovskite solar cells were fabricated by atomic layer deposition (ALD) of SnO2 and subsequent annealing at 180 °C. As-dep. SnO2 layers prepared by post-annealing at 180 and 300 °C, respectively, were used as electron transporting layers (ETLs).
View Article and Find Full Text PDFBreast cancer (BC)/mammary gland carcinoma (MGC) is the most frequently diagnosed and leading cause of cancer-related mortality in both women and canines. To better understand both canine MGC and human BC-specific genes, we sequenced RNAs obtained from eight pairs of carcinomas and adjacent normal tissues in dogs. By comprehensive transcriptome analysis, 351 differentially expressed genes (DEGs) were identified in overall canine MGCs.
View Article and Find Full Text PDFObjectives: Previously the authors reported age-related changes in the activities of anti-oxidative enzyme activities and protein expressions in the tongues of rats. Because more information is required about relations between aging and oxidative stress and anti-oxidative enzyme efficiency, the authors investigated differences between the expression of master regulator of anti-oxidative enzymes (nuclear factor erythroid 2-related factor 2 [Nrf2]), levels of reactive oxygen species (ROS), and mitochondrial structures in the tongues of young and aged Fischer 344 rats.
Methods: Age-dependent changes in Nrf2 protein and ROS were determined by Western blotting and using chemical kits, respectively.