Int J Mol Sci
July 2023
Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs).
View Article and Find Full Text PDFRetinal organoids derived from human-induced pluripotent stem cells (hiPSC) are powerful tools for studying retinal development as they model spatial and temporal differentiation of retinal cell types. Vertebrate retinal development involves a delicate and coordinated process of retinal progenitor cell (RPC) differentiation, and the mammalian target of rapamycin complex 1 (mTORC1) has been reported to play a significant role in this complex process. Herein, using hiPSC-derived retinal organoids, we identify the time-dependent role of mTORC1 in retinal development, specifically in retinal ganglion cell (RGC) differentiation and the retinal lamination process, during the early stages of retinal organoid (RO) development.
View Article and Find Full Text PDFOcular diseases featuring pathologic neovascularization are the leading cause of blindness, and anti-VEGF agents have been conventionally used to treat these diseases. Recently, regulating factors upstream of VEGF, such as HIF-1α, have emerged as a desirable therapeutic approach because the use of anti-VEGF agents is currently being reconsidered due to the VEGF action as a trophic factor. Here, we report a novel scaffold discovered through the complete structure-activity relationship of ring-truncated deguelin analogs in HIF-1α inhibition.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of blindness in the elderly. The two types of AMD are: dry and wet AMD. While laser-induced choroidal neovascularization has been used extensively in the studies of wet AMD, there is no established mouse model that fully recapitulates the cardinal features of dry AMD.
View Article and Find Full Text PDFOcular toxoplasmosis is mediated by monocytes infected with Toxoplasma gondii that are disseminated to target organs. Although infected monocytes can easily access to outer blood-retinal barrier due to leaky choroidal vasculatures, not much is known about the effect of T. gondii-infected monocytes on outer blood-retinal barrier.
View Article and Find Full Text PDFRetinoblastoma is the most common intraocular cancer in children, affecting 1/20,000 live births. Currently, children with retinoblastoma were treated with chemotherapy using drugs such as carboplatin, vincristine, and etoposide. Unfortunately, if conventional treatment fails, the affected eyes should be removed to prevent extension into adjacent tissues and metastasis.
View Article and Find Full Text PDFReactive oxygen species (ROS) as well as vascular endothelial growth factor (VEGF) play important roles in pathologic retinal neovascularization. We investigated whether betaine inhibits pathologic retinal neovascularization in a mouse model of oxygen induced retinopathy (OIR). Betaine was intravitreally injected in OIR mice at postnatal day (P) 14.
View Article and Find Full Text PDFLow oxygen or hypoxia can be observed in the central region of solid tumors. Hypoxia is a strong stimulus for new blood vessel formation or angiogenesis, which is essential for tumor growth and progression. Fibroblast growth factor 11 (FGF11) is an intracellular non-secretory FGF whose function has not yet been fully characterized.
View Article and Find Full Text PDFVascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer's disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and thus contributes to many vasoproliferative retinopathies including retinopathy of prematurity. Based on the importance of canonical transient receptor potential (TRPC) channels in VEGF signaling, we firstly evaluated the expression of TRPC channels in mouse retina by reverse transcriptase-polymerase chain reaction. All seven TRPC channels were expressed in mouse retina.
View Article and Find Full Text PDFRetinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage.
View Article and Find Full Text PDFIn diabetic retinopathy (DR), visual deterioration is related with retinal neovascularization and vascular hyperpermeability. Anti-vascular endothelial growth factor (VEGF) agents are currently utilized to suppress retinal neovascularization and macular edema (ME); however, there are still concerns on the widespread use of them because VEGF is a trophic factor for neuronal and endothelial cells in the retina. As an alternative treatment strategy for DR, it is logical to address hypoxia-related molecules to treat DR because the retina is in relative hypoxia as DR progresses.
View Article and Find Full Text PDFTo investigate the effect of protein kinase C (PKC)-ζ inhibition on vascular leakage in diabetic retinopathy, streptozotocin-induced diabetic mice were intravitreously injected with siPKC-ζ. According to the fluorescein angiography of the retinal vessels, suppression of PKC-ζ effectively attenuated vascular leakage in diabetic retina. Further evaluation on the retina with western blot analysis and immunohistochemistry revealed accompanying restoration of tight junction proteins on retinal vessels.
View Article and Find Full Text PDFClusterin is a cytoprotective chaperone protein that is known to protect various retinal cells. It was also reported to be overexpressed in several types of malignant tumors, whose chemoresistance correlates with the expression of clusterin. Herein, we investigated the effect of clusterin on cisplatin-induced cell death of retinoblastoma cells.
View Article and Find Full Text PDFEffective and validated animal models are valuable to investigate the pathogenesis and potential therapeutics for human diseases. There is much concern for diabetic retinopathy (DR) in that it affects substantial number of working population all around the world, resulting in visual deterioration and social deprivation. In this review, we discuss animal models of DR based on different species of animals from zebrafish to monkeys and prerequisites for animal models.
View Article and Find Full Text PDFPurpose: Oxidative stress-induced vascular endothelial growth factor (VEGF) is thought to play a critical role in the pathogenesis of retinopathy of prematurity (ROP). This study was performed to investigate the anti-angiogenic effect of luteolin against reactive oxygen species (ROS)-induced retinal neovascularization.
Methods: The toxicity of luteolin was evaluated through modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in human retinal microvascular endothelial cells (HRMECs) as well as TUNEL staining in the retina of C57BL/6J mice.
Vascular endothelial growth factor (VEGF) is a major regulator in retinal and choroidal angiogenesis, which are common causes of blindness in all age groups. Recently anti-VEGF treatment using anti-VEGF antibody has revolutionarily improved the visual outcome in patients with vaso-proliferative retinopathies. Herein, we demonstrated that bevacizumab as an anti-VEGF antibody could inhibit differentiation of retinoblastoma cells without affection to cellular viability, which would be mediated via blockade of extracellular signal-regulated kinase (ERK) 1/2 activation.
View Article and Find Full Text PDFClusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria.
View Article and Find Full Text PDFVision loss in diabetic retinopathy is due to macular edema characterized by increased vascular permeability, which involves phosphorylation associated with activation of protein kinase C (PKC) isoforms. Herein, we demonstrated PKC delta inhibition could prevent blood-retinal barrier breakdown in diabetic retinopathy. Increased vascular permeability of diabetic retina was accompanied by a decrease of zonula occludens (ZO)-1 and ZO-2 expression.
View Article and Find Full Text PDFPurpose: To investigate the differential roles of matrix metalloproteinase (MMP)-9 and MMP-2 in the proliferation or differentiation of retinoblastoma cells.
Methods: Cell proliferation assay with an MMP-9 inhibitor and cell viability assay with an MMP-2 inhibitor were performed in retinoblastoma cells with 5 ng/mL fibroblast growth factor 2 for proliferation, 0.1% bovine serum albumin for differentiation, or reverse transcriptase-polymerase chain reaction (RT-PCR) for MMP-9, MMP-2, and their tissue inhibitors TIMP-1 and TIMP-2.
Osteopontin (OPN, SPP1) is a secretory extracellular matrix protein that has been implicated in cancer-associated mechanisms such as metastasis, invasion and angiogenesis. Three OPN isoforms (OPN-a, -b and -c) derived from alternative splicing are known to exist, but their functional specificity remains unclear. Here, we found that the expression profile of OPN isoforms in hepatocellular carcinoma (HCC) cell lines and patient tissues were correlated with specific cellular phenotypes and tumorigenicity of HCC.
View Article and Find Full Text PDFRetinoblastoma is the most common primary intraocular malignancy in children. With the progression of retinoblastoma, retinoblastoma cells lose their ability to differentiate. Regardless of many attempts to identify prognostic factors in retinoblastoma, further investigation for prognostic factors of retinoblastoma progression is still required because of the lack of sensitivity and specificity of these prognostic factors in predicting disease progression.
View Article and Find Full Text PDFPurpose: Oxidative stress to retinal pigment epithelial (RPE) cells is thought to play a critical role in the pathogenesis of age-related macular degeneration (AMD). This study was conducted to investigate whether clusterin protects human RPE cells from ROS-induced apoptosis through a PI3K/Akt survival pathway.
Methods: The preventive effect of clusterin on reactive oxygen species (ROS) production and RPE cell death induced by hydrogen peroxide was determined in ARPE-19 cells.
Brain microvessels possess barrier structures comprising tight junctions which are critical for the maintenance of central nervous system homeostasis. Brain vascular diseases, such as ischemic stroke damage to blood-brain barrier, increase the vascular permeability, and then lead to vasogenic brain edema. Herein, we examined whether angiopoietin-1 (Ang-1) could regulate zonula occludens-2 (ZO-2) expression and counteract vascular endothelial growth factor (VEGF)-induced vascular permeability.
View Article and Find Full Text PDF