Publications by authors named "Hyoung-Gon Ko"

O-GlcNAcylation is a posttranslational modification where N-acetylglucosamine (O-GlcNAc) is attached and detached from a serine/threonine position by two enzymes: O-GlcNAc transferase and O-GlcNAcase. In addition to roles in diabetes and cancer, recent pharmacological and genetic studies have revealed that O-GlcNAcylation is involved in neuronal function, specifically synaptic transmission. Global alteration of the O-GlcNAc level does not affect basal synaptic transmission while the effect on synaptic plasticity is unclear.

View Article and Find Full Text PDF

Introduction: Satellite glial cells (SGCs) that envelop the cell bodies of neurons in sensory ganglia have been shown to both release glutamate, and be activated by glutamate in the context of nociceptive signaling. However, little is known about the subpopulations of SGCs that are activated following nerve injury and whether glutamate mechanisms in the SGCs are involved in the pathologic pain.

Methods: To address this issue, we used light and electron microscopic immunohistochemistry to examine the change in the glutamate levels in the SGCs and the structural relationship between neighboring neurons in the trigeminal ganglion (TG) in a rat model of craniofacial neuropathic pain, CCI-ION.

View Article and Find Full Text PDF

Pathological pain is caused by abnormal activity in the neural circuit that transmits nociceptive stimuli. Beyond homeostatic functions, astrocytes actively participate in regulating synaptic transmission as members of tripartite synapses. The perisynaptic astrocytic process (PAP) is the key structure that allows astrocytes to play these roles and not only physically supports synapse formation through cell adhesion molecules (CAMs) but also regulates the efficiency of chemical signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Oral lichen planus (OLP) is a chronic inflammatory condition affecting the mouth, characterized by T cell infiltration that leads to the death of skin-like cells in the oral lining.
  • The causes of OLP are complex, involving various factors rather than a single gene defect, and non-coding RNAs are crucial in regulating immune responses and inflammation in the body.
  • This review discusses how dysregulated non-coding RNAs may contribute to the development and worsening of OLP by influencing molecular and cellular changes in the oral epithelial tissue.
View Article and Find Full Text PDF

Itch is a distinctive sensation that causes a specific affection and scratching reaction. The anterior cingulate cortex (ACC) has been linked to itch sensation in numerous studies; however, its precise function in processing pruritic inputs remains unknown. Distinguishing the precise role of the ACC in itch sensation can be challenging because of its capacity to conduct heterologous neurophysiological activities.

View Article and Find Full Text PDF

Lateral habenula (LHb) is a brain region acting as a hub mediating aversive response against noxious, stressful stimuli. Growing evidences indicated that LHb modulates aminergic activities to induce avoidance behavior against nociceptive stimuli. Given overlapped neural circuitry transmitting pain and itch information, it is likely that LHb have a role in processing itch information.

View Article and Find Full Text PDF

Neur1 and Neur2, mouse homologs of the Drosophila neur gene, consist of two neuralized homology repeat domains and a RING domain. Both Neur1 and Neur2 are expressed in the whole adult brain and encode E3 ubiquitin ligases, which play a crucial role in the Notch signaling pathways. A previous study reported that overexpression of Neur1 enhances hippocampus-dependent memory, whereas the role of Neur2 remains largely unknown.

View Article and Find Full Text PDF

Synaptic proteins play an important role for the regulation of synaptic plasticity. Numerous studies have identified and revealed individual synaptic protein functions using protein overexpression or deletion. In neuropathic pain nociceptive stimuli conveyed from the periphery repetitively stimulate neurons in the central nerve system, brain and spinal cord.

View Article and Find Full Text PDF

Currently, compared to jaw-closing (JC) α-motoneurons, the information on the distribution and morphology of glutamatergic synapses on the jaw-closing (JC) γ-motoneurons, which may help elucidate the mechanism of isometric contraction of the JC muscle, is very limited. This study investigated the distribution and ultrastructural features of vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive (+) axon terminals (boutons) on JC γ-motoneurons by retrograde tracing with horseradish peroxidase, electron microscopic immunocytochemistry, and quantitative analysis. About 35% of the boutons on identified JC γ-motoneurons were VGLUT+, and of those, 99% were VGLUT2+.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how sensory signals from the urinary bladder connect in the spinal cord, focusing on synapses and neurotransmitters, primarily using advanced microscopy techniques.
  • They found that bladder afferent boutons in the spinal parasympathetic nucleus (SPN) form more connections with postsynaptic dendrites than those in the dorsal horn (DH), indicating a greater potential for synaptic plasticity in the SPN.
  • The study also revealed that in the DH, these boutons receive more inhibitory signals, suggesting that the processing of signals from the urinary bladder differs significantly between these two spinal regions compared to somatosensory information.
View Article and Find Full Text PDF

Protein kinase M ζ is well known for its role in maintaining memory and pain. Previously, we revealed that the activation of protein kinase M ζ in the anterior cingulate cortex plays a role in sustaining neuropathic pain. However, the mechanism by which protein kinase M ζ is expressed in the anterior cingulate cortex by peripheral nerve injury, and whether blocking of protein kinase M ζ using its inhibitor, zeta inhibitory peptide, produces analgesic effects in neuropathic pain maintained chronically after injury, have not previously been resolved.

View Article and Find Full Text PDF

Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage.

View Article and Find Full Text PDF

Peripheral nerve injury can induce pathological conditions that lead to persistent sensitized nociception. Although there is evidence that plastic changes in the cortex contribute to this process, the underlying molecular mechanisms are unclear. Here, we find that activation of the anterior cingulate cortex (ACC) induced by peripheral nerve injury increases the turnover of specific synaptic proteins in a persistent manner.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that participates in transcriptional repression or activation. Recent studies reported that LSD1 is involved in learning and memory. Although LSD1 phosphorylation by PKCα was implicated in circadian rhythmicity, the importance of LSD1 phosphorylation in learning and memory is unknown.

View Article and Find Full Text PDF

Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD.

View Article and Find Full Text PDF

Nociception is one of the most complex senses that is affected not only by external stimulation but also internal conditions. Previous studies have suggested that circadian rhythm is important in modulating nociception. REV-ERBα knock-out (KO) mice have disrupted circadian rhythm and altered mood-related phenotypes.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are a group of developmental disorders that cause variable and heterogeneous phenotypes across three behavioral domains such as atypical social behavior, disrupted communications, and highly restricted and repetitive behaviors. In addition to these core symptoms, other neurological abnormalities are associated with ASD, including intellectual disability (ID). However, the molecular etiology underlying these behavioral heterogeneities in ASD is unclear.

View Article and Find Full Text PDF

Unlabelled: MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression in many tissues. Although a number of brain-enriched miRNAs have been identified, only a few specific miRNAs have been revealed as critical regulators of synaptic plasticity, learning, and memory. miR-9-5p/3p are brain-enriched miRNAs known to regulate development and their changes have been implicated in several neurological disorders, yet their role in mature neurons in mice is largely unknown.

View Article and Find Full Text PDF

Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance.

View Article and Find Full Text PDF

Autism spectrum disorder is a debilitating mental illness and social issue. Autism spectrum disorder patients suffer from social isolation, cognitive deficits, compulsive behavior, and sensory deficits, including hyposensitivity to pain. However, recent studies argued that autism spectrum disorder patients show physiological pain response and, in some cases, even extremely intense pain response to harmless stimulation.

View Article and Find Full Text PDF

Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors.

View Article and Find Full Text PDF

A consolidated memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated within a few hours; however, the molecular substrates underlying this destabilization process remain essentially unknown. Here we show that at lateral amygdala synapses, fear memory consolidation correlates with increased surface expression of calcium-impermeable AMPA receptors (CI-AMPARs), which are known to be more stable at the synapse, whereas memory retrieval induces an abrupt exchange of CI-AMPARs to calcium-permeable AMPARs (CP-AMPARs), which are known to be less stable at the synapse. We found that blockade of either CI-AMPAR endocytosis or NMDA receptor activity during memory retrieval, both of which blocked the exchange to CP-AMPARs, prevented memory destabilization, indicating that this transient exchange of AMPARs may underlie the transformation of a stable memory into an unstable memory.

View Article and Find Full Text PDF

Long-term depression (LTD) is a key form of synaptic plasticity important in learning and information storage in the brain. It has been studied in various cortical regions, including the anterior cingulate cortex (ACC). ACC is a crucial cortical region involved in such emotion-related physiological and pathological conditions as fear memory and chronic pain.

View Article and Find Full Text PDF

Recently, pluripotency induction or cellular reprogramming by introducing critical transcription factors has been extensively studied, but has been demonstrated only in vitro. Based on reports that Oct4 is critically involved in transforming neural stem cells into pluripotent cells, we used the lentiviral vector to introduce the Oct4 gene into the hippocampal dentate gyrus (DG) of adult mice. We examined whether this manipulation led to cellular or behavioral changes, possibly through processes involving the transformation of NS cells into pluripotent cells.

View Article and Find Full Text PDF