The development of environmentally sustainable processes for polymer recycling is of paramount importance in the polymer industry. In particular, the implementation of chemical recycling for thermoset polymers via covalent adaptable networks (CANs), particularly those based on the dynamic hindered urea bond (HUB), has garnered intensive attention from both the academic and industrial sectors. This interest stems from its straightforward chemical structure and reaction mechanism, which are well-suited for commercial polyurethane and polyurea applications.
View Article and Find Full Text PDFAnti-counterfeiting (ACF) technology plays a crucial role in distinguishing genuine products from counterfeits, as well as in identity verification. Moreover, it serves as a protective measure for safeguarding the rights of individuals, companies, and governments. In this study, a high-level ACF technology was developed using a color-conversion system based on the photothermal effect of near-infrared (NIR) wavelengths.
View Article and Find Full Text PDFMembrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal -butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems.
View Article and Find Full Text PDFMembrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations.
View Article and Find Full Text PDFGlucoside detergents are successfully used for membrane protein crystallization mainly because of their ability to form small protein-detergent complexes. In a previous study, we introduced glucose neopentyl glycol (GNG) amphiphiles with a branched diglucoside structure that has facilitated high resolution crystallographic structure determination of several membrane proteins. Like other glucoside detergents, however, these GNGs were less successful than DDM in stabilizing membrane proteins, limiting their wide use in protein structural study.
View Article and Find Full Text PDFDespite their major biological and pharmacological significance, the structural and functional study of membrane proteins remains a significant challenge. A main issue is the isolation of these proteins in a stable and functional state from native lipid membranes. Detergents are amphiphilic compounds widely used to extract membrane proteins from the native membranes and maintain them in a stable form during downstream analysis.
View Article and Find Full Text PDFDetergents are widely used to isolate membrane proteins from lipid bilayers, but many proteins solubilized in conventional detergents are structurally unstable. Thus, there is major interest in the development of novel amphiphiles to facilitate membrane protein research. In this study, we have designed and synthesized novel amphiphiles with a rigid scyllo-inositol core, designated scyllo-inositol glycosides (SIGs).
View Article and Find Full Text PDFCorrection for 'Trehalose-cored amphiphiles for membrane protein stabilization: importance of the detergent micelle size in GPCR stability' by Manabendra Das et al., Org. Biomol.
View Article and Find Full Text PDFDespite their importance in biology and medicinal chemistry, structural and functional studies of membrane proteins present major challenges. To study diverse membrane proteins, it is crucial to have the correct detergent to efficiently extract and stabilize the proteins from the native membranes for biochemical/biophysical downstream analyses. But many membrane proteins, particularly eukaryotic ones, are recalcitrant to stabilization and/or crystallization with currently available detergents and thus there are major efforts to develop novel detergents with enhanced properties.
View Article and Find Full Text PDFMaintaining protein stability in an aqueous solution is a prerequisite for protein structural and functional studies, but conventional detergents have increasingly showed limited ability to maintain protein integrity. A representative novel agent, maltose neopentyl glycol-3 (MNG-3), has recently substantially contributed to membrane protein structural studies. Motivated by the popular use of this novel agent, we prepared asymmetric versions of MNG-3 and evaluated these agents with several membrane proteins including two G protein-coupled receptors in this study.
View Article and Find Full Text PDFAmphiphiles are critical tools for the structural and functional study of membrane proteins. Membrane proteins encapsulated by conventional head-to-tail detergents tend to undergo structural degradation, necessitating the development of structurally novel agents with improved efficacy. In recent years, facial amphiphiles have yielded encouraging results in terms of membrane protein stability.
View Article and Find Full Text PDFA novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.
View Article and Find Full Text PDFIntegral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent-solubilised membrane proteins often denature and aggregate, resulting in loss of both structure and function.
View Article and Find Full Text PDFDetergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation-sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures.
View Article and Find Full Text PDFDetergents are widely used for membrane protein research; however, membrane proteins encapsulated in micelles formed by conventional detergents tend to undergo structural degradation, necessitating the development of new agents with enhanced efficacy. Here we prepared several hydrophobic variants of ganglio-tripod amphiphiles (TPAs) derived from previously reported TPAs and evaluated for a multi-subunit, pigment protein superassembly. In this study, TPA-16 was found to be most efficient in protein solubilization while TPA-15 proved most favourable in long-term protein stability.
View Article and Find Full Text PDFWe prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.
View Article and Find Full Text PDFMembrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly.
View Article and Find Full Text PDFIntegral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules.
View Article and Find Full Text PDFMembrane proteins operate in unique cellular environments. Once removed from their native context for the purification that is required for most types of structural or functional analyses, they are prone to denature if not properly stabilized by membrane mimetics. Detergent micelles have prominently been used to stabilize membrane proteins in aqueous environments as their amphipathic nature allows for shielding of the hydrophobic surfaces of these bio-macromolecules while supporting solubility and monodispersity in water.
View Article and Find Full Text PDF