Semantic processing is an essential mechanism in human language comprehension and has profound implications for speech brain-computer interface technologies. Despite recent advances in brain imaging techniques and data analysis algorithms, the mechanisms underlying human brain semantic representations remain a topic of debate, specifically whether this occurs through the activation of selectively separated cortical regions or via a network of distributed and overlapping regions. This study investigates spatiotemporal neural representation during the perception of semantic words related to faces, numbers, and animals using electroencephalography.
View Article and Find Full Text PDFAuditory prostheses provide an opportunity for rehabilitation of hearing-impaired patients. Speech intelligibility can be used to estimate the extent to which the auditory prosthesis improves the user's speech comprehension. Although behavior-based speech intelligibility is the gold standard, precise evaluation is limited due to its subjectiveness.
View Article and Find Full Text PDFWithout expert coaching, inexperienced exercisers performing core exercises, such as squats, are subject to an increased risk of spinal or knee injuries. Although it is theoretically possible to measure the kinematics of body segments and classify exercise forms with wearable sensors and algorithms, the current implementations are not sufficiently accurate. In this study, the squat posture classification performance of deep learning was compared to that of conventional machine learning.
View Article and Find Full Text PDF