AMI has been gradually replacing conventional meters because newer models can acquire more informative energy consumption data. The additional information has enabled significant advances in many fields, including energy disaggregation, energy consumption pattern analysis and prediction, demand response, and user segmentation. However, the quality of AMI data varies significantly across publicly available datasets, and low sampling rates and numbers of houses monitored seriously limit practical analyses.
View Article and Find Full Text PDFIn this paper, we provide findings from an energy saving experiment in a university building, where an IoT platform with 1 Hz sampling sensors was deployed to collect electric power consumption data. The experiment was a reward setup with daily feedback delivered by an energy delegate for one week, and energy saving of 25.4% was achieved during the experiment.
View Article and Find Full Text PDF