Publications by authors named "Hyojin Ko"

Programmed, reshaping hydrogel architectures were fabricated from sugar/hydrogel inks via a three-dimensional printing method involving a stimuli-responsive polymer. We developed a new hydrogel ink composed of monomers (acrylamide [AAm]) and N-isopropylacrylamide [NIPAAm]), and sugar (mixture of glucose and sucrose) as a pore-generator, enabling to improve printability by increasing the ink's viscoelastic properties and induce the formation of macropores in the hydrogel architectures. This study demonstrated that creating macropores in such architectures enables rapid responses to stimuli that can facilitate four-dimensional printing.

View Article and Find Full Text PDF

Patient deaths resulting from cardiovascular diseases are increasing across the globe, posing the greatest risk to patients in developed countries. Myocardial infarction, as a result of inadequate blood flow to the myocardium, results in irreversible loss of cardiomyocytes which can lead to heart failure. A sequela of myocardial infarction is scar formation that can alter the normal myocardial architecture and result in arrhythmias.

View Article and Find Full Text PDF

Physicochemical and biological gradients are desirable features for hydrogels to enhance their relevance to biological environments for three-dimensional (3D) cell culture. Therefore, simple and efficient techniques to generate chemical, physical and biological gradients within hydrogels are highly desirable. This work demonstrates a technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels by stacking and crosslinking prehydrogel solution in a layer by layer manner.

View Article and Find Full Text PDF

Screening a compound library of quinolinone derivatives identified compound 11a as a new P2X7 receptor antagonist. To optimize its activity, we assessed structure-activity relationships (SAR) at three different positions, R, R and R, of the quinolinone scaffold. SAR analysis suggested that a carboxylic acid ethyl ester group at the R position, an adamantyl carboxamide group at R and a 4-methoxy substitution at the R position are the best substituents for the antagonism of P2X7R activity.

View Article and Find Full Text PDF

Millimeter-long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self-rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial-based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer.

View Article and Find Full Text PDF

Antagonism of the P2X3 receptor is one of the potential therapeutic strategies for the management of neuropathic pain because P2X3 receptors are predominantly localized on small to medium diameter C- and Aδ-fiber primary afferent neurons, which are related to the pain-sensing system. In this study, 5-hydroxy pyridine derivatives were designed, synthesized, and evaluated for their in vitro biological activities by two-electrode voltage clamp assay at hP2X3 receptors. Among the novel hP2X3 receptor antagonists, intrathecal treatment of compound 29 showed parallel efficacy with pregabalin (calcium channel modulator) and higher efficacy than AF353 (P2X3 receptor antagonist) in the evaluation of its antiallodynic effects in spinal nerve ligation rats.

View Article and Find Full Text PDF

Direct integration of semiconductor photonic nanocavities with paper substrates is demonstrated for the first time. 1D photonic crystal nanocavities successfully show lasing action on paper substrates. The device has great synergy as a sensor because paper has good wicking ability while a photonic crystal cavity has high figure of merit.

View Article and Find Full Text PDF

The quinolinone skeleton has been utilized to develop various mechanism-based immune modulators. However, the effects of quinolinone derivatives on the release of T cell-associated interleukin-2 (IL-2) have not been established. In this study, a series of novel quinolinone derivatives was synthesized, and their immunosuppressive activity was evaluated by measuring suppression of IL-2 release from activated Jurkat T cells.

View Article and Find Full Text PDF

Members of the Janus kinase (JAK) family are potential therapeutic targets. Abnormal signaling by mutant JAK2 is related to hematological malignancy, such as myeloproliferative neoplasms (MPNs), and tyrosine kinase inhibitor (TKI)-resistance in non-small cell lung cancer (NSCLC). We discovered a potent and highly selective inhibitor of JAK2 over JAK1 and -3 based on the structure of 4-(2,5-triazole)-pyrrolopyrimidine.

View Article and Find Full Text PDF

The P2X7 receptor (P2X7R) has been reported as a key mediator in inflammatory processes and cancer invasion/metastasis. In this study, we report the discovery of novel P2X7R antagonists and their functional activities as potential antimetastatic agents. Modifications of the hydantoin core-skeleton and the side chain substituents of the P2X7R antagonist 7 were performed.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of biophysics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet technology.

View Article and Find Full Text PDF

Human coxsackievirus B3 (CVB3) 3C protease plays an essential role in the viral replication of CVB3, which is a non-enveloped and positive single-stranded RNA virus belonging to Picornaviridae family, causing acute viral myocarditis mainly in children. During optimization based on SAR studies of benserazide (3), which was reported as a novel anti-CVB3 3C(pro) agent from a screening of compound libraries, the 2,3,4-trihydroxybenzyl moiety of 3 was identified as a key pharmacophore for inhibitory activity against CVB3 3C(pro). Further optimization was performed by the introduction of various aryl-alkyl substituted hydrazide moieties instead of the serine moiety of 3.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers modified the structure of KN-62, a known P2X7 receptor antagonist, to create new compounds that target this receptor more effectively.
  • The modifications included changing the 4-position of a piperazine group and testing various substituents, with polycycloalkyl and di-halogenated benzoyl groups showing better activity than the original structure.
  • Among the new compounds, one particularly effective derivative (18 m) demonstrated strong antagonistic effects and had a favorable profile for metabolism and toxicity, suggesting potential for use in anti-inflammatory drug development.
View Article and Find Full Text PDF

The pyridine core skeleton of the previously reported dichloropyridine-based potent hP2X7 receptor antagonist 5 (IC50 = 13 nM in hP2X7-expressing HEK293 cells) was modified with various heterocyclic scaffolds. Among the derivatives with quinoline, quinazoline, acridine, and purine scaffolds, the chloropurine-based analog 9o exhibited the most potent antagonistic activity, with an IC50 value of 176 ± 37 nM in an ethidium bromide uptake assay. In addition, 9o significantly inhibited IL-1β release in THP-1 cells stimulated with LPS/IFN-γ/BzATP (IC50 = 120 ± 15 nM).

View Article and Find Full Text PDF

Basic manipulations of discrete liquid drops on opened microfluidic chips based on electrowetting on dielectrics were described. While most developed microfluidic chips are closed systems equipped with a top plate to cover mechanically and to contact electrically to drop samples, our chips are opened systems with a single plate without any electric contact to drops directly. The chips consist of a linear array of patterned electrodes at 1.

View Article and Find Full Text PDF

Pheophorbide-a, a non-selective photosensitizer, was conjugated with cancer-targeting moieties, such as folic acid, the CRGDLASLC peptide, the cRGDfK peptide and leuprorelin, for the purpose of targeted photodynamic cancer therapy. The cellular uptake of pheophorbide-a conjugates in cancer cells overexpressing the corresponding receptors of the targeting moieties was largely enhanced compared with that in the receptor-negative cells. In the study of in vitro photodynamic activity and selectivity of pheophorbide-a conjugates in the receptor-positive and receptor-negative cells, a pheophorbide-a conjugate, (14) with an αvβ6 ligand (CRGDLASLC) exhibited the highest selectivity in the positive FaDu cells.

View Article and Find Full Text PDF

Novel 2,5-dioxoimidazolidine-based conformationally constrained analogues of KN62 (1) were developed as P2X7 receptor (P2X7R) antagonists using a rigidification strategy of the tyrosine backbone of 1. SAR analysis of the 2,5-dioxoimidazolidine scaffold indicated that piperidine substitution at the N3 position and no substitution at N1 position were preferable. Further optimization of the substituents at the piperidine nitrogen and the spacer around the skeleton resulted in several superior antagonists to 1, including 1-adamantanecarbonyl analogue 21i (IC50 = 23 nM in ethidium uptake assay; IC50 = 14 nM in IL-1β ELISA assay) and (3-CF3-4-Cl)benzoyl analogue (-)-21w (54 nM in ethidium uptake assay; 9 nM in IL-1β ELISA assay), which was more potent than the corresponding (+) isomer.

View Article and Find Full Text PDF

Quinolinones have various biological activities, including antibacterial, anticancer, and antiviral properties. The 3-substituted amide quinolin-2(1H)-ones not only show antibacterial activity, but also act as immunomodulators, 5-HT4 receptor agonists, cannabinoid receptor inverse agonists, and AchE and, BuchE inhibitors. To investigate the potent biological activity of 3-substituted amide quinolin-2(1H)-ones, a large number of 3,5-amide substituted-2-oxoquinolinones were prepared by parallel solid-phase synthesis.

View Article and Find Full Text PDF

Active, paper-based, microfluidic chips driven by electrowetting are fabricated and demonstrated for reagent transport and mixing. Instead of using the passive capillary force on the pulp to actuate a flow of a liquid, a group of digital drops are transported along programmed trajectories above the electrodes printed on low-cost paper, which should allow point-of-care production and diagnostic activities in the future.

View Article and Find Full Text PDF

Pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (7a, PPADS), a nonselective P2X receptor antagonist, was extensively modified to develop more stable, potent, and selective P2X₃ receptor antagonists as potential antinociceptive agents. Based on the results of our previous report, all strong anionic groups in PPADS including phosphate and sulfonate groups were changed to carboxylic acids or deleted. The unstable azo (-NN-) linkage of 7a was transformed to more stable carbon-carbon, ether or amide linkages through the synthesis of the 5-hydroxyl-pyridine moieties with substituents at 2 position via a Diels-Alder reaction.

View Article and Find Full Text PDF

The electrowetting of water drops on a dielectric fluoropolymer film was studied experimentally. The dependence of the contact angles of the water drops on the applied voltage has been well explained in the low-voltage limit by using the classical Young-Lippmann theory. With this theory, the thicknesses of films coated on glass substrates by using a spin-coater were obtained indirectly by fitting the contact angle data and were confirmed by using X-ray reflectometry.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) with photosensitizer is one of the promising modalities for cancer treatment. For clinical use of PDT, screening process should be preceded to enhance sensitivity to PDT. Thus, we investigated a molecular biomarker to determine the sensitivity to pheophorbide a (Pa)-PDT in immortalized human oral keratinocytes (IHOK) and oral squamous cell carcinoma (OSCC) cell lines.

View Article and Find Full Text PDF

Screening of a library of chemical compounds showed that the dichloropyridine-based analogue 9 was a novel P2X(7) receptor antagonist. To optimize its activity, we assessed the structure-activity relationships (SAR) of 9, focusing on the hydrazide linker, the dichloropyridine skeleton, and the hydrophobic acyl (R(2)) group. We found that the hydrazide linker and the 3,5-disubstituted chlorides in the pyridine skeleton were critical for P2X(7) antagonistic activity and that the presence of hydrophobic polycycloalkyl groups at the R(2) position optimized antagonistic activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnn2kuibhs4ifjkmh2ar8jsee7f6vgiac): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once