Tactile pressure sensors as flexible bioelectronic devices have been regarded as the key component for recently emerging applications in electronic skins, health-monitoring devices, or human-machine interfaces. However, their narrow range of sensible pressure and their difficulty in forming high integrations represent major limitations for various potential applications. Herein, we report fully integrated, active-matrix arrays of pressure-sensitive MoS transistors with mechanoluminescent layers and air dielectrics for wide detectable range from footsteps to cellular motions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Recent approaches in self-healable electrodes use polymers with exhibiting significantly low electrical conductivity, compared to conventional metals. Such self-healable electrodes also require external stimuli to initiate self-healing, or present slow restoration for their intrinsic healing. Herein, we introduce an instantaneous and repeatable self-healing of highly conductive, fully metallic electrodes at ambient conditions.
View Article and Find Full Text PDFThe formation of three-dimensional (3D) interconnections is essential in integrated circuit packaging technology. However, conventional interconnection methods, including the wire-bonding process, were developed for rigid structures of electronic devices, and they are not applicable to the integration of soft and stretchable electronic devices. Hence, there is a strong demand for 3D interconnection technology that is applicable to soft, stretchable electronic devices.
View Article and Find Full Text PDF