The initial disruption caused by road construction, combined with ongoing vehicular traffic and regular road maintenance, can repeatedly disturb the environment in ways that favor introduced alien plants. We hypothesized that several characteristics of road construction influence the introduction of alien plants and analyzed 444 Environmental Impact Assessment reports for insights into the relationship between the progression of construction and alien plant richness. Additionally, we believed that roads enhance seed dispersal post-construction, and tested this using Ambrosia trifida patches on completed roads.
View Article and Find Full Text PDFThe spread of invasive alien species is a major threat to biodiversity. Estimating the long-distance dispersal capacity of invasive alien plants is vital for understanding their population dynamics and community composition. We predicted the spatial-temporal distribution of the alien plant Andropogon virginicus, in the Korean peninsula under climate change scenario using Random Forest (RF) and Cellular Automaton (CA) methods.
View Article and Find Full Text PDFInvasive alien plants can severely threaten biodiversity and cause economic losses in the agricultural industry; therefore, identifying the critical environmental factors related to the distribution of alien plants plays a crucial role in ecosystem management. In this study, we applied partial least squares regression (PLSR) and geographically weighted regression (GWR) to estimate the important environmental factors affecting the spread of two invasive and expansive plants, L. and Willd.
View Article and Find Full Text PDFDespite the advances in restoration methods for newly created road habitats such as roadcuts and embankments, implementation in different parts of the world is limited by high cost and lack of knowledge of naturally formed plant communities. However, a cheaper alternative is to relay in natural successional process in sites under optimal conditions. Thus, the first steps should focus on identifying plant species that colonize roadways and road habitats as well as optimal colonization sites.
View Article and Find Full Text PDFA present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals.
View Article and Find Full Text PDF