Publications by authors named "Hyo-Sang Do"

Article Synopsis
  • Kabuki syndrome (KS) is a rare genetic disorder marked by distinct facial features, skeletal issues, growth delays, and intellectual disabilities, primarily caused by mutations in the KMT2D and KDM6A genes.
  • A study of 28 Korean patients revealed typical physical traits, significant developmental delays, and various health complications, with notable findings including the discovery of 15 new genetic variants.
  • The research contributes to a deeper understanding of KS, highlighting the importance of genetic testing and the variability in patient symptoms and outcomes.
View Article and Find Full Text PDF

Background: Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive disorder caused by loss-of-function mutations of the NTRK1 gene, affecting the autonomic and sensory nervous system. Clinical manifestation is varied and includes recurrent fever, pain insensitivity, anhidrosis, self-mutilating behavior, and intellectual disability.

Methods: Clinical and genetic features were assessed in two males and one female with genetically confirmed CIPA using exome or genome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • This study focused on understanding the genetic diversity of cardiomyopathy among 72 Korean patients to improve how the condition is classified and managed.
  • Researchers performed whole-exome sequencing, finding that dilated cardiomyopathy (DCM) was the most common form, with significant genetic alterations identified, particularly in the TTN and MYH7 genes.
  • The findings suggest that genetic testing can help in personalizing treatment and monitoring strategies for patients based on their specific genetic variants, as some variants correlate with worse clinical outcomes.
View Article and Find Full Text PDF

Lesch-Nyhan syndrome (LNS) is inherited as an X-linked recessive genetic disorder caused by mutations in hypoxanthine-guanine phosphoribosyl transferase 1 (). Patients with LNS show various clinical phenotypes, including hyperuricemia, gout, devastating behavioral abnormality, intellectual disability, and self-harm. Although uric acid overproduction can be modulated with the xanthine oxidase inhibitor allopurinol, there exists no treatment for behavioral and neurological manifestations of LNS.

View Article and Find Full Text PDF

Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling.

View Article and Find Full Text PDF

Fabry disease (FD) is a lysosomal storage disorder caused by mutations in GLA gene. Here, GLA mutation (1268fs*1 (c.803_806del)) of FD iPSCs was corrected using the CRISPR-Cas9 gene editing system.

View Article and Find Full Text PDF

Background: The genetic features and treatment strategies of lateralized overgrowth have been elusive. We performed this study to analyze the genetic characteristics and treatment results of propranolol- or alpelisib-treated patients with lateralized overgrowth.

Methods: Fifteen patients with lateralized overgrowth were involved.

View Article and Find Full Text PDF

Mevalonic aciduria (MA) is the most severe clinical subtype of mevalonate kinase deficiency (MKD) caused by an inherited defect in the mevalonate pathway. The treatment of MKD focuses on the suppression of recurrent hyperinflammatory attacks using anti-inflammatory drugs. Recently, allogeneic hematopoietic stem cell transplantation (HCT) was shown to successfully ameliorate autoinflammatory attacks in patients with MKD.

View Article and Find Full Text PDF

Background: The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorders, including the Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF complex-related intellectual disability disorders (SSRIDDs).

View Article and Find Full Text PDF

Costello syndrome (CS) is an autosomal dominant disorder caused by mutations in HRAS. Although CS patients have skeletal abnormalities, the role of mutated HRAS in bone development remains unclear. Here, we use CS induced pluripotent stem cells (iPSCs) undergoing osteogenic differentiation to investigate how dysregulation of extracellular matrix (ECM) remodeling proteins contributes to impaired osteogenesis.

View Article and Find Full Text PDF

Background: Fabry disease (FD) is a recessive X-linked lysosomal storage disorder caused by α-galactosidase A (GLA) deficiency. Although the mechanism is unclear, GLA deficiency causes an accumulation of globotriaosylceramide (Gb3), leading to vasculopathy.

Methods: To explore the relationship between the accumulation of Gb3 and vasculopathy, induced pluripotent stem cells generated from four Fabry patients (FD-iPSCs) were differentiated into vascular endothelial cells (VECs).

View Article and Find Full Text PDF

Isolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRαFlk1 cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197.

View Article and Find Full Text PDF

Background And Objectives: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development.

View Article and Find Full Text PDF

Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types.

View Article and Find Full Text PDF