Methanogens play an important role in the demethylation of arsenic. Soil amendments that inhibit methanogens can increase dimethylarsinic acid (DMA), which is responsible for straighthead disease in rice. A decrease in methanogenesis caused by silicate fertilizer may increase DMA concentration in paddy soils and rice grains; the relationship between these two factors and their impacts on DMA concentration remains unclear.
View Article and Find Full Text PDFRedox chemistry involving the quinone/phenol cycling of natural organic matter (NOM) is known to modulate microbial respiration. Complexation with metals or minerals can also affect NOM solubilization and stability. Inspired by these natural phenomena, a new soil amendment approach was suggested to effectively decrease methane emissions in flooded rice paddies.
View Article and Find Full Text PDFMonolayer barriers, which are usually known as evapotranspiration (ET) covers, have long been used as alternative final cover systems in waste landfills. Coal bottom ash was evaluated as a good alternative to soil in landfill ET cover systems to increase the bottom ash (BA) recycling ratio in the past. In a previous study, applying BA promoted plant growth characteristics and improved the soil physicochemical properties, particularly the soil organic carbon (SOC) content.
View Article and Find Full Text PDFWith the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling.
View Article and Find Full Text PDFThe effective utilization of slag-based Silicon fertilizer (silicate fertilizer) in agriculture to improve crop productivity and to mitigate environmental consequences turns it into a high value added product in sustainable agriculture. Despite the integral role of soil microbiome in agricultural production and virtually all ecosystem processes, our understanding of the microbial role in ecosystem functions and agricultural productivity in response to the silicate fertilizer amendment is, however, elusive. In this study, using 16S rRNA gene and ITS amplicon illumina sequencing and a functional gene microarray, i.
View Article and Find Full Text PDFOver the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.
View Article and Find Full Text PDFRye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH4), during rice cultivation. The chemical composition and productivity of cover crop biomass may vary at different growing stages.
View Article and Find Full Text PDF