Publications by authors named "Hyo Sang Jo"

The authors investigated the effects of a silk solution against laminectomy-induced dural adhesion formation and inflammation in a rat model. They found that it significantly reduced postlaminectomy dural adhesion formation and inflammation. Dural adhesion formation, thought to be an inevitable consequence of laminectomy, is one of the most common complications following spinal surgery, and the authors' results indicate that the silk solution might be a potential novel therapeutic agent for dural adhesion formation.

View Article and Find Full Text PDF

Phosphoprotein enriched in astrocytes 15 (PEA15) plays a multi-functional role in neuronal cell survival, however the effects of PEA15 against inflammation have not been investigated yet. To examine the effects of PEP-1-PEA15 protein against lipopolysaccharide (LPS)-induced inflammatory responses in Raw 264.7 cells and in a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, we constructed and purified PEP-1-PEA15 protein, which can transduce into cells or tissues.

View Article and Find Full Text PDF

Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)‑1, a redox‑regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood.

View Article and Find Full Text PDF

Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells.

View Article and Find Full Text PDF

Objectives: To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.

Results: By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in HO-exposed HepG2 cells.

View Article and Find Full Text PDF

Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown.

View Article and Find Full Text PDF

Oxidative stress is highly involved in the development of diabetes mellitus by destruction of pancreatic β-cells. DJ-1 is an antioxidant protein and DJ-1 expression levels are known to be reduced in diabetes mellitus. Thus, we examined the effects of DJ-1 protein against oxidative stress-induced pancreatic β-cell (RINm5F) death using cell permeable wild-type and mutant-type (C106A) Tat-DJ-1 proteins, which both efficiently transduced into RINm5F cells.

View Article and Find Full Text PDF

Oxidative stress is closely associated with various diseases and is considered to be a major factor in ischemia. NAD(P)H:quinone oxidoreductase 1 (NQO1) protein is a known antioxidant protein that plays a protective role in various cells against oxidative stress. We therefore investigated the effects of cell permeable Tat-NQO1 protein on hippocampal HT-22 cells, and in an animal ischemia model.

View Article and Find Full Text PDF

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia.

View Article and Find Full Text PDF

Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein.

View Article and Find Full Text PDF

Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death.

View Article and Find Full Text PDF

Oxidative stress is considered a major factor in various neuronal diseases including ischemia-reperfusion injury. Proviral Integration Moloney 2 (PIM2) proteins, one of the families of PIM kinases, play crucial roles in cell survival. However, the functions of PIM2 protein against ischemia are not understood.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue.

View Article and Find Full Text PDF

Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells.

View Article and Find Full Text PDF

Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) accumulation induces oxidative stress and cell damage, which then activates several signaling pathways and triggers inflammatory response. Biliverdin is a natural product of heme metabolism which is converted to bilirubin by the enzyme biliverdin reductase A (BLVRA) which also plays a role in antioxidant activity via the ROS scavenging activity of bilirubin. In this study, we examined the anti-inflammatory and anti-apoptotic effects of Tat-BLVRA protein on lipopolysaccharide (LPS)-induced inflammation in Raw 264.

View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP(+)) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity.

View Article and Find Full Text PDF

Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.

View Article and Find Full Text PDF

Background: PEA-15 is abundantly expressed in both neurons and astrocytes throughout the brain. It is a multifunctional protein with the ability to increase cell survival via anti-apoptotic and anti-proliferative properties. However, the function of PEA-15 in neuronal diseases such as Parkinson's disease (PD) remains unclear.

View Article and Find Full Text PDF

Methylglyoxal (MG), a metabolite of glucose, is the major precursor of protein glycation and induces apoptosis. MG is associated with neurodegeneration, including oxidative stress and impaired glucose metabolism, and is efficiently metabolized to S-D-lactoylglutathione by glyoxalase (GLO). Although GLO has been implicated as being crucial in various diseases including ischemia, its detailed functions remain unclear.

View Article and Find Full Text PDF

We examined the ways in which fenobam could promote not only the transduction of PEP-1-FK506BP into cells and tissues but also the neuroprotective effect of PEP-1-FK506BP against ischemic damage. Fenobam strongly enhanced the protective effect of PEP-1-FK506BP against H2O2-induced toxicity and DNA fragmentation in C6 cells. In addition, combinational treatment of fenobam with PEP-1-FK506BP significantly inhibited the activation of Akt and MAPK induced by H2O2, compared to treatment with PEP-1-FK506BP alone.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD.

View Article and Find Full Text PDF