Monoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson's disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%).
View Article and Find Full Text PDFMonoamine oxidase-B (MAO-B) has recently emerged as a potential therapeutic target for Alzheimer's disease (AD) because of its association with aberrant γ-aminobutyric acid (GABA) production in reactive astrocytes. Although short-term treatment with irreversible MAO-B inhibitors, such as selegiline, improves cognitive deficits in AD patients, long-term treatments have shown disappointing results. We show that prolonged treatment with selegiline fails to reduce aberrant astrocytic GABA levels and rescue memory impairment in APP/PS1 mice, an animal model of AD, because of increased activity in compensatory genes for a GABA-synthesizing enzyme, diamine oxidase (DAO).
View Article and Find Full Text PDFAlthough the etiology of Parkinson's disease (PD) remains elusive, recent studies suggest that oxidative stress contributes to the cascade leading to dopaminergic (DAergic) neurodegeneration. The Nrf2 signaling is the main pathway responsible for cellular defense system against oxidative stress. Nrf2 is a transcription factor that regulates environmental stress response by inducing expression of antioxidant enzyme genes.
View Article and Find Full Text PDF