Time-resolved terahertz spectroscopy is used to investigate formation and ultrafast long-distance propagation of electron-hole plasma in strongly photoexcited GaAs and InP. The observed phenomena involve fundamental interactions of electron-hole system with light, which manifest themselves in two different regimes: a coherent one with the plasma propagation speeds up to /10 (in GaAs at 20 K) and an incoherent one reaching up to /25 (in InP at 20 K), both over a macroscopic distance >100 μm. We explore a broad range of experimental conditions by investigating the two materials, by tuning their band gap with temperature and by controlling the interaction strength with the optical pump fluence.
View Article and Find Full Text PDFElectron-hole plasma expansion with velocities exceeding c/50 and lasting over 10 ps at 300 K was evidenced by time-resolved terahertz spectroscopy. This regime, in which the carriers are driven over >30 μm is governed by stimulated emission due to low-energy electron-hole pair recombination and reabsorption of the emitted photons outside the plasma volume. At low temperatures a speed of c/10 was observed in the regime where the excitation pulse spectrally overlaps with emitted photons, leading to strong coherent light-matter interaction and optical soliton propagation effects.
View Article and Find Full Text PDFTerahertz steady-state and time-resolved conductivity and permittivity spectra were measured in 3D graphene networks assembled in free-standing covalently cross-linked graphene aerogels. Investigation of a transition between reduced-graphene oxide and graphene controlled by means of high-temperature annealing allowed us to elucidate the role of defects in the charge carrier transport in the materials. The THz spectra reveal increasing conductivity and decreasing permittivity with frequency.
View Article and Find Full Text PDFIntroduction of in situ HCl etching to an epitaxial growth process has been shown to suppress radial growth and improve the morphology and optical properties of nanowires. In this paper, we investigate the dynamics of photo-generated charge carriers in a series of indium phosphide nanowires grown with varied HCl fluxes. Time resolved photo-induced luminescence, transient absorption and time resolved terahertz spectroscopy were employed to investigate charge trapping and recombination processes in the nanowires.
View Article and Find Full Text PDFPhotoinitiated charge carrier dynamics in ZnO nanoparticles sensitized by CdSe quantum dots is studied using transient absorption spectroscopy and time-resolved terahertz spectroscopy. The evolution of the transient spectra shows that electron injection occurs in a two-step process, where the formation of a charge transfer state (occurring in several picoseconds) is followed by its dissociation within tens of picoseconds. The photoconductivity of electrons injected into the ZnO nanoparticles is lower than that of charges photogenerated directly in ZnO.
View Article and Find Full Text PDFTime-resolved terahertz spectroscopy was employed for the investigation of charge-transport dynamics in benzothiadiazolo-dithiophene polyfluorene ([2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) (APFO-3) polymers with various chain lengths and in its monomer form, all blended with an electron acceptor ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM). Upon photoexcitation, charged polaron pairs are created, negative charges are transferred to fullerenes, while positive polarons remain on polymers/monomers. Vastly different hole mobility in polymer and monomer blends allows us to distinguish the hole and electron contributions to the carrier mobility.
View Article and Find Full Text PDFTime-resolved terahertz spectroscopy and combination of quantum chemistry modeling and molecular dynamics simulations were used for the determination of charge carrier mobility in poly[methyl(phenyl)silylene]. Using time-resolved THz spectroscopy we established the on-chain charge carrier drift mobility in PMPSi as 0.02 cm(2) V(-1) s(-1).
View Article and Find Full Text PDF