Publications by authors named "Hylke B Akkerman"

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy.

View Article and Find Full Text PDF

Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance.

View Article and Find Full Text PDF

Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces.

View Article and Find Full Text PDF

For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor.

View Article and Find Full Text PDF

The ultimate target of molecular electronics is to combine different types of functional molecules into integrated circuits, preferably through an autonomous self-assembly process. Charge transport through self-assembled monolayers has been investigated previously, but problems remain with reliability, stability and yield, preventing further progress in the integration of discrete molecular junctions. Here we present a technology to simultaneously fabricate over 20,000 molecular junctions-each consisting of a gold bottom electrode, a self-assembled alkanethiol monolayer, a conducting polymer layer and a gold top electrode-on a single 150-mm wafer.

View Article and Find Full Text PDF

The orientation of alkanedithiol molecules in self-assembled monolayers (SAMs) is of vital importance for their transport properties in molecular junctions. It is demonstrated that a too-low concentration of long alkanedithiols in ethanol leads to the formation of looped molecules, resulting in a 50-fold increase of the current through the SAM. X-ray photoelectron spectroscopy measurements show that high-concentration dithiol solutions result in a preferential standing-up phase.

View Article and Find Full Text PDF

The electrical transport through self-assembled monolayers of alkanedithiols was studied in large-area molecular junctions and described by the Simmons model [Simmons JG (1963) J Appl Phys 34:1793-1803 and 2581-2590] for tunneling through a practical barrier, i.e., a rectangular barrier with the image potential included.

View Article and Find Full Text PDF

Electronic transport through single molecules has been studied extensively by academic and industrial research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes, break junctions, metallic crossbars and nanopores. For technological applications, molecular tunnel junctions must be reliable, stable and reproducible.

View Article and Find Full Text PDF