By varying counter ions of ion-conductive mesogens (ICMs) from bromide (Br), to tetrafluoroborate (BF), and to bis(trifluoromethanesulfonyl)imide (TFSI), the ionic conductivity of ICM is systematically investigated based on their self-assembled nanostructure and activation energy. Thermal and phase transition behaviors of ICM-Br, -BF, and -TFSI exhibit significant variation based on the anion type. These differences are further reflected in the self-assembled nanostructures of the ICMs, which are characterized through X-ray and electron diffraction experiments.
View Article and Find Full Text PDFA diarylethene-based zwitterionic molecule (DZM) is newly synthesized for the development of smart films exhibiting reversible color change and switchable ionic conductivity in response to external light stimuli. This dual molecular building block is constructed through zwitterionic interlocking and strong phase separation between the dendron-shaped aliphatic tails and the diarylethene head. Uniaxial shear coating and molecular self-assembly result in anisotropically oriented nanostructures, which are further solidified through photopolymerization.
View Article and Find Full Text PDFBiomass-based functional polymers have received significant attention across various fields, in view of eco-friendly human society and sustainable growth. In this context, there are efforts to functionalize the biomass polymers for next-generation polymer materials. Here, stretchable heat transfer materials are focused on which are essential for stretchable electronics and future robotics.
View Article and Find Full Text PDF2D nanomaterials with ångström-scale thicknesses offer a unique platform for confining molecules at an unprecedentedly small scale, presenting novel opportunities for modulating material properties and probing microscopic phenomena. In this study, mesogen-tethered polyhedral oligomeric silsesquioxane (POSS) amphiphiles with varying numbers of mesogenic tails to systematically influence molecular self-assembly and the architecture of the ensuing supramolecular structures, are synthesized. These organic-inorganic hybrid amphiphiles facilitate precise spatial arrangement and directional alignment of the primary molecular units within highly ordered supramolecular structures.
View Article and Find Full Text PDFFor the construction of hierarchical superstructures with biaxial anisotropic absorption, a newly synthesized diacetylene-functionalized bipyridinium is self-assembled to use an electron-accepting host for capturing and arranging guests. The formation of the donor-acceptor complex triggers an intermolecular charge transfer, leading to chromophore activation. Polarization-dependent multichroic thin films are prepared through a sequential process of single-coating, self-assembly, and topochemical polymerization of host-guest chromophores.
View Article and Find Full Text PDFFor the development of acid-responsive advanced fluorescent films with a 2D nanostructure, a pyridyl cyanostilbene-based AIEgen (PCRM) is newly synthesized. The synthesized PCRM exhibits aggregation-induced emission (AIE) and responds reversibly to acid and base stimuli. To fabricate the nanoporous polymer-stabilized film, PCRM and 4-(octyloxy)benzoic acid (8OB) are complexed in a 1:1 ratio through hydrogen bonding.
View Article and Find Full Text PDFDisc-shaped building blocks with columnar phases have attracted attention for their potential in optical applications, including a retarder. However, to achieve coatable high-performance optical films, it is essential to understand a subtle interaction balance between building blocks and relevant self-assembled behaviors during material processing. Herein, we studied a self-assembled nanocolumn evaluation of linear butterfly-shaped dendrons (T-AD) consisting of thiophene-based conjugated core and flexible alkyl dendron.
View Article and Find Full Text PDFUtilizing a newly programmed and synthesized heat storage mesogen (HSM) and reactive mesogen (RM), advanced heat managing polymer alloys that exhibit high thermal conductivity, high latent heat, and phase transition at high temperatures were developed for use as smart thermal energy harvesting and reutilization materials. The RM in the heat-managing RM-HSM polymer alloy was polymerized to form a robust polymeric network with high thermal conductivity. The phase-separated HSM domains between RM polymeric networks absorbed and released a lot of thermal energy in response to changes in the surrounding temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
For the development of anisotropic thermal interface materials (TIMs), a rod-shaped reactive monomer PNP-6MA is newly designed and successfully synthesized. PNP-6MA reveals a smectic A (SmA) mesophase between crystalline (K) and isotropic (I) phases. PNP-6MA can be oriented under a magnetic field ( B = 2 T), and its macroscopic orientation can be robustly stabilized by in situ polymerization.
View Article and Find Full Text PDF