Publications by authors named "Hyeryeong Lee"

Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic pain patients often experience depressive symptoms, and this study looked into how exercise affects brain-derived neurotrophic factor (BDNF) levels relating to pain and depression.
  • Mice were given reserpine (RSP) to induce pain and depression-like behaviors, then exercised on a rota-rod for seven days afterward, with various tests used to assess pain and depressive signs.
  • Results showed exercise lessened pain sensitivity and depression, while it also adjusted BDNF levels in affected areas of the nervous system, suggesting exercise could be a non-invasive treatment for conditions where pain and depression overlap.
View Article and Find Full Text PDF

Aim: To identify and compare factors associated with pain perception and management among paediatric nurses and nursing students using virtual human technology.

Design: This study employed a comparative, cross-sectional design.

Methods: Fifty-one paediatric nurses from a tertiary hospital and 50 senior nursing students from a nursing college, both located in South Korea, participated in the study.

View Article and Find Full Text PDF

Purpose: The duties of paramedics and emergency medical technicians (P&EMTs) are continuously changing due to developments in medical systems. This study presents evaluation goals for P&EMTs by analyzing their work, especially the tasks that new P&EMTs (with less than 3 years’ experience) find difficult, to foster the training of P&EMTs who could adapt to emergency situations after graduation.

Methods: A questionnaire was created based on prior job analyses of P&EMTs.

View Article and Find Full Text PDF

The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface.

View Article and Find Full Text PDF

We designed and constructed a whole-cell biosensor capable of detecting the presence and quantity of carbon monoxide (CO) using the CO regulatory transcription factor. This biosensor utilizes CooA, a CO-sensing transcription regulator that activates the expression of carbon monoxide dehydrogenase (CODH), to detect the presence of CO and respond by triggering the expression of a GUS reporter protein (β-glucuronidase). The GUS reporter protein is expressed from a CO-induced CooA-binding promoter (P) by CooA and enables the effective colorimetric detection of CO.

View Article and Find Full Text PDF

Aims: Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific.

View Article and Find Full Text PDF

Family caregivers of children with tracheostomies or home ventilators are more likely to experience poor sleep quality when undertaking the full responsibility of caring for fragile children. This scoping review aimed to identify the sleep quality, related factors, and their impact on the health of family caregivers of children with tracheostomies or home ventilators. The included studies ( = 16) were retrieved through PubMed, CINAHL, Cochrane Library, Embase, PsycINFO, and Web of Science.

View Article and Find Full Text PDF

Here, we present a protocol for constructing direct electron transfer (DET)-based enzyme-electrodes using gold-binding peptide (GBP). We describe fusion of four GBPs to flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα), as model oxidoreductase, to generate four GDHγα variants. We then detail the measurements of catalytic and bioelectrochemical properties of these GDHγα variants on electrode together with surface morphology of GDHγα variants immobilized on gold surface.

View Article and Find Full Text PDF

Controlling the orientation of redox enzymes on electrode surfaces is essential in the development of direct electron transfer (DET)-based bioelectrocatalytic systems. The electron transfer (ET) distance varies according to the enzyme orientation when immobilized on an electrode surface, which influences the interfacial ET rate. We report control of the orientation of carbon monoxide dehydrogenase (CODH) as a model enzyme through the fusion of gold-binding peptide (gbp) at either the N- or the C-terminus, and at both termini to strengthen the binding interactions between the fusion enzyme and the gold surface.

View Article and Find Full Text PDF

Oriented enzyme immobilization on electrodes is crucial for interfacial electrical coupling of direct electron transfer (DET)-based enzyme-electrode systems. As inorganic-binding peptides are introduced as molecular binders and enzyme-orienting agents, inorganic-binding peptide-fused enzymes should be designed and constructed to achieve efficient DET. In this study, it is aimed to compare the effects of various gold-binding peptides (GBPs) fused to enzymes on electrocatalytic activity, bioactivity, and material-binding behaviors.

View Article and Find Full Text PDF

In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was immobilized on the working electrode surface of screen-printed electrode (SPE) which consists of gold working electrode, a silver pseudo-reference electrode and a platinum counter electrode, to develop the biosensing system with compact design and favorable sensing ability. The bioelectrochemical and mechanical properties of GBP fused FAD-GDH (GDH-GBP) immobilized SPE (GDH-GBP/Au) were investigated.

View Article and Find Full Text PDF

CO dehydrogenase (CODH) employed in a dissolved CO biosensor development study harbors a solvent-exposed cofactor capable of DET to electrode. Here, CODH was immobilized on arrays of AuNPs of various dimensions to determine the effect of the size and shape of the electrode surface on the direct electrical connection between CODH and electrode surface. The results showed the degree of proximity between the CODH cofactor and electrode surface, which varied with AuNP size and caused significant changes to the electrical connection at the interface as well as to the substrate accessibility.

View Article and Find Full Text PDF

In this study, the effect of inter-enzyme steric hindrance that occurs during enzyme immobilization on the electrode, on direct electrical communications of enzyme with electrode was investigated via nano-patterning of enzymes on the electrode. Here, the nano-patterning of enzymes was achieved through the combination of DET-capable enzyme that was produced via fusion of site-specific gold binding peptide (GBP) to catalytic subunit of enzyme and gold nanoparticle (AuNP) array with highly tunable dimensions of AuNPs, resulting in spatially controllable enzyme-electrode. The nano-scale spatial control between immobilized enzymes on the highly tuned AuNPs shows different DET efficiency across the enzyme-electrode interface, showing 18.

View Article and Find Full Text PDF

Direct electron transfer (DET) between enzymes and electrodes is a key issue for practical use of bioelectrocatalytic devices as a bioenergy process, such as enzymatic electrosynthesis, biosensors, and enzyme biofuel cells. To date, based on the DET of bioelectrocatalysis, less than 1% of the calculated theoretical current was transferred to final electron acceptor due to energy loss at enzyme-electrode interface. This study describes the design and construction of a synthetic glucose dehydrogenase (GDH; α and γ subunits) combined with a gold-binding peptide at its amino or carboxy terminus for direct contact between enzyme and electrode.

View Article and Find Full Text PDF

In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.

View Article and Find Full Text PDF