Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles.
View Article and Find Full Text PDFNeurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)- induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes.
View Article and Find Full Text PDFSarcopenia refers to the gradual loss of skeletal muscle mass and function along with aging and is a social burden due to growing healthcare cost associated with a super-aging society. Therefore, researchers have established guidelines and tests to diagnose sarcopenia. Several studies have been conducted actively to reveal the cause of sarcopenia and find an economic therapy to improve the quality of life in elderly individuals.
View Article and Find Full Text PDFWe recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2019
We report the development of halloysite nanotubes (HNTs)/carboxylated-cellulose nanocrystals (cCNCs) - reinforced and ionically-crosslinked k-carrageenan (k-CG)/xanthan gum (XG) hydrogels. In this study, cCNCs were extracted from microcrystalline cellulose using ammonium persulfate and exhibit 'spindle-like' nanocrystals with approximate diameter of 15-30 nm and length of 30-120 nm. The freeze-dried hydrogels showed highly porous microstructure with good pore-interconnectivity.
View Article and Find Full Text PDFBackground: Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven species is thought to be largely absent in (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other strains.
Results: In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA.
We introduce the draft genome sequences of five enterotoxigenic strains: Bc 12, Bc 67, Bc 111, Bc 112, and Bc 113, which were obtained from powdered infant formula. The genome sizes of the strains ranged from 5.5 to 5.
View Article and Find Full Text PDFFive halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species.
View Article and Find Full Text PDFWe demonstrate a simple and efficient method for separating metallic from semiconducting single-walled carbon nanotubes (SWNTs) using density-gradient ultracentrifugation. Density differences between metallic and semiconducting SWNTs, which enable SWNT separation by electronic type, are created using a single surfactant, i.e.
View Article and Find Full Text PDFHighly efficient exfoliation of individual single-walled carbon nanotubes (SWNTs) was successfully demonstrated by utilizing biocompatible phenoxylated dextran, a kind of polysaccharide, as a SWNT dispersion agent. Phenoxylated dextran shows greater ability in producing individual SWNTs from raw materials than any other dispersing agent, including anionic surfactants and another polysaccharide. Furthermore, with this novel polymer, SWNT bundles or impurities present in raw materials are removed under much milder processing conditions compared to those of ultra-centrifugation procedures.
View Article and Find Full Text PDF