High-rate production of multicarbon chemicals via the electrochemical CO reduction can be achieved by efficient CO mass transport. A key challenge for C-C coupling in high-current-density CO reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO-to-*CO conversion and *CO dimerization for high-rate ethylene production.
View Article and Find Full Text PDFCross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality.
View Article and Find Full Text PDFCopper nanowires (CuNWs) possess key characteristics for realizing flexible transparent electronics. High-quality CuNW micropatterns with high resolution and uniform thickness are required to realize integrated transparent electronic devices. However, patterning high-aspect-ratio CuNWs is challenging because of their long length, exceeding the target pattern dimension.
View Article and Find Full Text PDFThe concurrent enhancement of short-circuit current ( ) and open-circuit voltage ( ) is a key problem in the preparation of efficient organic solar cells (OSCs). In this paper, we report efficient and stable OSCs based on an asymmetric non-fullerene acceptor (NFA) IPC-BEH-IC2F. The NFA consists of a weak electron-donor core dithienothiophen[3,2-]-pyrrolobenzothiadiazole (BEH) and two kinds of strong electron-acceptor (A) units [9-indeno[1,2-]pyrazine-2,3-dicarbonitrile (IPC) with a tricyclic fused system and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile (IC2F)].
View Article and Find Full Text PDF