Publications by authors named "Hyeonwoo Jeong"

The topological properties of gapped graphene have been explored for valleytronics applications. Prior transport experiments indicated their topological nature through large nonlocal resistance in Hall-bar devices, but the origin of this resistance was unclear. This study focused on dual-gate bilayer graphene (BLG) devices with naturally cleaved edges, examining how edge-etching with an oxygen plasma process affects electron transport.

View Article and Find Full Text PDF

Graphene's exceptional electronic mobility, gate-tunability, and contact transparency with superconducting materials make it ideal for exploring the superconducting proximity effect. However, the work function difference between graphene and superconductors causes unavoidable doping of graphene near contacts, forming a p-n junction in the hole-doped regime and reducing the contact transparency. This challenges the device implementation that exploits graphene's bipolarity.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review update was to determine the average effect of massage for adults with neck pain (NP) contrasted against another standard treatment.

Methods: Randomised controlled trials comparing massage to standard treatments were included; placebo/no treatment comparisons were excluded. Databases were searched (CENTRAL, MEDLINE, EMBASE, CINAHL, ICL, trial registries) from inception to Oct-1-2023.

View Article and Find Full Text PDF

Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration.

View Article and Find Full Text PDF

Fibrillated celluloses have gained significant attention due to their exceptional mechanical properties and eco-friendly characteristics, which make them suitable for various applications. In this study, we designed a precise approach for producing highly fibrillated microcrystalline cellulose (MCC) via ball-milling treatment using four typical silane coupling agents. The empirical data demonstrate that the fibrillization of MCC and the properties of fibrillated MCC are largely affected by the size and geometry of the functional groups of the silanes.

View Article and Find Full Text PDF

Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density.

View Article and Find Full Text PDF

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe  and vdW ferromagnet Fe GeTe are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) is a van der Waals semiconductor with a wide bandgap of ~ 5.96 eV. Despite the indirect bandgap characteristics of hBN, charge carriers excited by high energy electrons or photons efficiently emit luminescence at deep-ultraviolet (DUV) frequencies via strong electron-phonon interaction, suggesting potential DUV light emitting device applications.

View Article and Find Full Text PDF

The quantification of blood flow velocity in the human conjunctiva is clinically essential for assessing microvascular hemodynamics. Since the conjunctival microvessel is imaged in several seconds, eye motion during image acquisition causes motion artifacts limiting the accuracy of image segmentation performance and measurement of the blood flow velocity. In this paper, we introduce a novel customized optical imaging system for human conjunctiva with deep learning-based segmentation and motion correction.

View Article and Find Full Text PDF