Publications by authors named "Hyeonuk Choi"

Electrochemical conversion of waste nitrate (NO ) to ammonia (NH) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH Faradaic efficiency of 91.

View Article and Find Full Text PDF

Hydrogen production from water splitting combined with renewable electricity can provide a viable solution to the energy crisis. A novel MoS/NiS/NiS heterostructure is designed as a bifunctional electrocatalyst by facile hydrothermal method to demonstrate excellent electrocatalytic performance towards overall water splitting applications. MoS/NiS/NiS heterostructure necessitates a low overpotential of 81 mV and 210 mV to attain a current density of 10 mA cm during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively.

View Article and Find Full Text PDF

The integration of energy conversion and storage systems such as electrochemical water splitting (EWS) and rechargeable zinc-air battery (ZAB) is on the vision to provide a sustainable future with green energy resources. Herein, a unique strategy for decorating 3D tetragonal CoMn O on carbon cloth (CMO-U@CC) via a facile one-pot in situ hydrothermal process, is reported. The highly exposed morphology of 3D tetragons enhances the electrocatalytic activity of CMO-U@CC.

View Article and Find Full Text PDF

The vacuum deposition method requires high energy and temperature. Hydrophobic reduced graphene oxide (rGO) can be obtained by plasma-enhanced chemical vapor deposition under atmospheric pressure, which shows the hydrophobic surface property. Further, to compare the effect of hydrophobic and the hydrophilic nature of catalysts in the photoelectrochemical cell (PEC), the prepared rGO was additionally treated with plasma that attaches oxygen functional groups effectively to obtain hydrophilic graphene oxide (GO).

View Article and Find Full Text PDF