Reservoir computing (RC) system is based upon the reservoir layer, which non-linearly transforms input signals into high-dimensional states, facilitating simple training in the readout layer-a linear neural network. These layers require different types of devices-the former demonstrated as diffusive memristors and the latter prepared as drift memristors. The integration of these components can increase the structural complexity of RC system.
View Article and Find Full Text PDFThe field of biomimetic electronics that mimic synaptic functions has expanded significantly to overcome the limitations of the von Neumann bottleneck. However, the scaling down of the technology has led to an increasingly intricate manufacturing process. To address the issue, this work presents a one-shot integrable electropolymerization (OSIEP) method with remote controllability for the deposition of synaptic elements on a chip by exploiting bipolar electrochemistry.
View Article and Find Full Text PDFBrain-inspired neuromorphic computing systems, based on a crossbar array of two-terminal multilevel resistive random-access memory (RRAM), have attracted attention as promising technologies for processing large amounts of unstructured data. However, the low reliability and inferior conductance tunability of RRAM, caused by uncontrollable metal filament formation in the uneven switching medium, result in lower accuracy compared to the software neural network (SW-NN). In this work, we present a highly reliable CoO-based multilevel RRAM with an optimized crystal size and density in the switching medium, providing a three-dimensional (3D) grain boundary (GB) network.
View Article and Find Full Text PDF