Publications by authors named "Hyeonju Yeo"

An unbalanced microbial ecosystem on the human skin is closely related to skin diseases and has been associated with inflammation and immune responses. However, little is known about the role of the skin microbiome on skin aging. Here, we report that the Streptococcus species improved the skin structure and barrier function, thereby contributing to anti-aging.

View Article and Find Full Text PDF

In recent years, a number of active materials have been developed to provide anti-aging benefits for skin and, among them, peptides have been considered the most promising candidate due to their remarkable and long-lasting anti-wrinkle activity. Recent studies have begun to elucidate the relationship between the secretion of emotion-related hormones and skin aging. Kisspeptin, a neuropeptide encoded by the gene, has gained attention in reproductive endocrinology since it stimulates the reproductive axis in the hypothalamus; however, the effects of Kisspeptin on skin have not been studied yet.

View Article and Find Full Text PDF

In this study, caviar (sturgeon eggs) was used to elucidate its roles in adiponectin production and skin anti-aging. Recently, caviar has been largely used not only as a nutritional food, but also in cosmetic products. In particular, it has been reported that docosahexaenoic acid (DHA), as one of the main phospholipid components of caviar extract, induces intracellular lipid accumulation and the expression of adiponectin in adipocytes.

View Article and Find Full Text PDF

2'-Fucosyllactose (2FL) is the most abundant component of the oligosaccharide content in human milk. It has been reported that 2FL has the ability to protect against infectious disease caused by bacterial pathogens. In this study, we investigated the protective effects of 2FL on particulate matter (PM)-induced pro-inflammatory cytokines in HaCaT keratinocytes.

View Article and Find Full Text PDF

Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways.

View Article and Find Full Text PDF

Neural stem cells (NSCs) persist over the lifespan of mammals to give rise to committed progenitors and their differentiated cells in order to maintain the brain homeostasis. To this end, NSCs must be able to self-renew and otherwise maintain their quiescence. Suppression of aberrant proliferation or undesired differentiation is crucial to preclude either malignant growth or precocious depletion of NSCs.

View Article and Find Full Text PDF

In the meta-analysis of public microarray databases for different skin diseases, we revealed seven commonly up-regulated genes, DSG3, KRT6, MAP17, PLSCR1, RPM2, SOD2 and SPRR2B. We postulated that the genes selected from the meta-analysis may be potentially associated with the abnormal keratinocyte differentiation. To demonstrate this postulation, we alternatively evaluated whether the genes of interest in the meta-analysis can be regulated by T-helper (Th) cell cytokines in normal human epidermal keratinocytes (NHEK).

View Article and Find Full Text PDF

We previously reported that the in vivo and in vitro suppression of Nuclear Factor of Activated T Cells (NFAT) signaling increases osteoblast differentiation and bone formation. To investigate the mechanism by which NFATc1 regulates osteoblast differentiation, we established an osteoblast cell line that overexpresses a constitutively active NFATc1 (ca-NFATc1). The activation of NFATc1 significantly inhibits osteoblast differentiation and function, demonstrated by inhibition of alkaline phosphatase activity and mineralization as well as a decrease in gene expression of early and late markers of osteoblast differentiation such as osterix and osteocalcin, respectively.

View Article and Find Full Text PDF

We recently reported that the pharmacological inhibition of calcineurin (Cn) by low concentrations of cyclosporin A increases osteoblast differentiation in vitro and bone mass in vivo. To determine whether Cn exerts direct actions in osteoblasts, we generated mice lacking Cnb1 (Cn regulatory subunit) in osteoblasts (DeltaCnb1(OB)) using Cre-mediated recombination methods. Transgenic mice expressing Cre recombinase, driven by the human osteocalcin promoter, were crossed with homozygous mice that express loxP-flanked Cnb1 (Cnb1(f/f)).

View Article and Find Full Text PDF

Cyclosporin A (CsA) is thought to prevent immune reactions after organ transplantation by inhibiting calcineurin (Cn) and its substrate, the Nuclear Factor of Activated T Cells (NFAT). A dichotomy exists in describing the effects of CsA on bone formation. The concept that the suppression of Cn/NFAT signaling by CsA inhibits bone formation is not entirely supported by many clinical reports and laboratory animal studies.

View Article and Find Full Text PDF

Bone loss and osteoporosis are major public health problems in the elderly. With increasing life expectancy in the United States, the number of people that will develop age-related bone loss and osteoporosis is expected to rise to over 61 million by 2020. Osteoblast differentiation is a crucial aspect of bone formation and remodeling, a process severely compromised in osteoporosis.

View Article and Find Full Text PDF

Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca(2+) receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L.

View Article and Find Full Text PDF