Recently, many electrocardiogram (ECG) classification algorithms using deep learning have been proposed. Because the ECG characteristics vary across datasets owing to variations in factors such as recorded hospitals and the race of participants, the model needs to have a consistently high generalization performance across datasets. In this study, as part of the PhysioNet/Computing in Cardiology Challenge (PhysioNet Challenge) 2021, we present a model to classify cardiac abnormalities from the 12- and the reduced-lead ECGs.
View Article and Find Full Text PDF