Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements.
View Article and Find Full Text PDFUltrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light-matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging.
View Article and Find Full Text PDFMatter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction.
View Article and Find Full Text PDFLight detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and unmanned aerial vehicle reconnaissance. Until recently, LiDAR has relied on light sources and detectors mounted on multiple mechanically rotating optical transmitters and receivers to cover an entire scene. Such an architecture gives rise to limitations in terms of the imaging frame rate and resolution.
View Article and Find Full Text PDFUnderstanding characteristic energy scales is a fundamentally important issue in the study of strongly correlated systems. In multiband systems, an energy scale is affected not only by the effective Coulomb interaction but also by the Hund's coupling. Direct observation of such energy scale has been elusive so far in spite of extensive studies.
View Article and Find Full Text PDFResonant elastic x-ray scattering has been widely employed for exploring complex electronic ordering phenomena, such as charge, spin, and orbital order, in particular, in strongly correlated electronic systems. In addition, recent developments in pump-probe x-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL).
View Article and Find Full Text PDFWe report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV.
View Article and Find Full Text PDFStrong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS_{3}, a van der Waals antiferromagnet, from studies of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption, photoemission spectroscopy, and density functional calculations. NiPS_{3} displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission, and optical spectra support a self-doped ground state in NiPS_{3}.
View Article and Find Full Text PDFAgPbO has attracted attentions due to its novel nearly-free-electron superconductivity, but its electronic structure and orbital character of the Cooper-pair electrons remain controversial. Here, we present a method utilizing core-level photoemission to show that Pb 6s electrons dominate near the Fermi level. We observe a strongly asymmetric Pb 4 f core-level spectrum, while a Ag 3d spectrum is well explained by two symmetric peaks.
View Article and Find Full Text PDFRecently, α-RuCl has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies.
View Article and Find Full Text PDFAngle-resolved photoemission spectroscopy (ARPES) study of a layered electride Ca2N was carried out to reveal its quasi-two-dimensional electronic structure. The band dispersions and the Fermi-surface map are consistent with the density functional theory results except for a chemical potential shift that may originate from the high reactivity of surface excess electrons. Thus, the existence of anionic excess electrons in the interlayer region of Ca2N is strongly supported by ARPES.
View Article and Find Full Text PDFStrain control is one of the most promising avenues to search for new emergent phenomena in transition-metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO3 (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized eg-orbital bands are systematically rearranged by misfit strain to change its fermiology.
View Article and Find Full Text PDFWe report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr(3+) ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.
View Article and Find Full Text PDFHeat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales.
View Article and Find Full Text PDFAn explicit connection between the electronic structure and the anisotropic high conductivity of delafossite-type PdCoO2 has been established by angle-resolved photoemission spectroscopy (ARPES) and core-level x-ray photoemission spectroscopy. The ARPES spectra show that a large hexagonal electronlike Fermi surface (FS) consists of very dispersive Pd 4d states. The carrier velocity and lifetime are determined from the ARPES data, and the conductivity is calculated by a solution of the Boltzmann equation, which demonstrates that the high anisotropic conductivity originates from the high carrier velocity, the large two-dimensional FS, and the long lifetime of the carriers.
View Article and Find Full Text PDFWe have studied the adsorption and decomposition of thiophene (C4H4S) on Ge(100) using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculation. Analysis of S 2p core-level spectra reveals three adsorption geometries, which we assign to a Ge-S dative bonding state, a [4 + 2] cycloaddition bonding state, and a decomposed bonding state (desulfurization reaction product). Furthermore, we found that the number ratio of the three adsorption geometries depended on the molecular coverage and the annealing temperature.
View Article and Find Full Text PDFThe adsorption of thiophene on Ge(100) has been studied using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculations. Until now, thiophene is known to react with the Ge(100) dimer through a [4 + 2] cycloaddition reaction at room temperature, similar to the case of thiophene on Si(100). However, we found that thiophene has two adsorption geometries on Ge(100) at room temperature, such as a kinetically favorable Ge-S dative bonding configuration and a thermodynamically stable [4 + 2] cycloaddition adduct.
View Article and Find Full Text PDFCore-level x-ray photoemission spectra for the Mott-Hubbard systems are calculated by the dynamical mean-field theory based on the exact diagonalization method. The spectra show a two-peak structure, screened and unscreened peaks. The screened peak is absent in a Mott insulator, but develops into the main peak when the correlation strength becomes weak and the system turns metallic.
View Article and Find Full Text PDFWe have measured Ce 4f spectral weights of extremely alpha-like Ce transition metal intermetallic compounds CeRhx (x=2,3) and CeNix (x=2,5) by using the bulk-sensitive resonant photoemission technique at the Ce M5(3d(5/2)-->4f) edge. High energy resolution and longer escape depth of photoemitted electron at this photon energy enabled us to distinguish the sharp Kondo resonance tails at the Fermi level, which can be well described by the Gunnarsson-Schönhammer calculation based on the Anderson impurity Hamiltonian. On the other hand, the itinerant 4f band description shows big discrepancies, which implies that Ce 4f electrons retain localized characters even in extremely alpha-like compounds.
View Article and Find Full Text PDF