Publications by authors named "Hyeong-Reh C Kim"

Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer (PCa) progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors.

View Article and Find Full Text PDF

The vaccinia virus expression system is known for the efficient production of recombinant proteins with "appropriate" posttranslational modification using desired mammalian cell lines. However, being a replication competent virus, vaccinia virus poses a health threat to immunocompromised individuals and requires biosafety level 2 (BSL2) laboratory precautions, thereby restricting its use by the scientific community. Development of the host range restricted modified vaccinia Ankara (MVA) system has allowed researchers to work with a safer virus even at BSL1.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are adult stem cell populations and exhibit great potential in regenerative medicine and oncology. Platelet-derived growth factors (PDGFs) are well known to regulate MSC biology through their chemotactic and mitogenic properties. However, their direct roles in the regulation of MSC lineage commitment are unclear.

View Article and Find Full Text PDF

The autophagy-lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status.

View Article and Find Full Text PDF

A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1-CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis.

View Article and Find Full Text PDF

Despite recent advances in therapeutic modalities such as radiochemotherapy, the long-term prognosis for patients with advanced head and neck squamous cell carcinoma (HNSCC), especially nonviral HNSCC, remains very poor, while survival of patients with human papillomavirus (HPV)-associated HNSCC is greatly improved after radiotherapy. The goal of this study is to develop a mechanism-based treatment protocol for high-risk patients with HPV-negative HNSCC. To achieve our goal, we have investigated molecular mechanisms underlying differential radiation sensitivity between HPV-positive and -negative HNSCC cells.

View Article and Find Full Text PDF

A concurrent human papilloma virus (HPV) infection potentiates the efficacy of ionizing radiation for treatment of head and neck cancer by promoting apoptosis. Studies in cell culture indicated an opposite effect for photodynamic therapy (PDT) when this leads to mitochondrial and ER photodamage. The explanation for this difference in PDT efficacy remains to be established.

View Article and Find Full Text PDF

The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site.

View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a pleiotropic protein, promoting both tumor-suppressive and tumor-promoting activities. While TIMP-1 is primarily known as an endogenous inhibitor of matrix metalloproteinases (MMPs) and thus associated with tumor cell invasion, clinical studies demonstrated increased expression of TIMP-1 and its association with poor prognosis in cancer. Non-MMP-inhibitory and oncogenic functions of TIMP-1 are mediated by induction of intracellular signaling via its cell surface receptor CD63, a tetraspanin.

View Article and Find Full Text PDF

Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival.

View Article and Find Full Text PDF

Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis.

View Article and Find Full Text PDF

HPV-positive oropharyngeal cancer patients experience significantly lower locoregional recurrence and higher overall survival in comparison with HPV-negative patients, especially among those who received radiation therapy. The goal of the present study is to investigate the molecular mechanisms underlying the differential radiation sensitivity between HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Here, we show that HPV-negative HNSCC cells exhibit increased glucose metabolism as evidenced by increased production of lactate, while HPV-positive HNSCC cells effectively utilize mitochondrial respiration as evidenced by increased oxygen consumption.

View Article and Find Full Text PDF

Background: Characterization of genes linked to bone metastasis is critical for identification of novel prognostic or predictive biomarkers and potential therapeutic targets in metastatic castrate-resistant prostate cancer (mCRPC). Although bone marrow core biopsies (BMBx) can be obtained for gene profiling, the procedure itself is invasive and uncommon practice in mCRPC patients. Conversely, circulating tumor cells (CTCs), which are likely to stem from bone metastases, can be isolated from blood.

View Article and Find Full Text PDF

Activation of β-platelet-derived growth factor receptor (β-PDGFR) is associated with prostate cancer (PCa) progression and recurrence after prostatectomy. Analysis of the β-PDGFR ligands in PCa revealed association between PDGF-D expression and Gleason score as well as tumor stage. During the course of studying the functional consequences of PDGF ligand-specific β-PDGFR signaling in PCa, we discovered a novel function of PDGF-D for activation/shedding of the serine protease matriptase leading to cell invasion, migration, and tumorigenesis.

View Article and Find Full Text PDF

The platelet-derived growth factors (PDGF A, B, C, and D) and their receptors (α-PDGFR and β-PDGFR) play an indispensible role in physiologic and pathologic conditions, including tumorigenesis. The transformative β-PDGFR is overexpressed and activated during prostate cancer progression, but the identification and functional significance of its complementary ligand have not been elucidated. This study examined potential oncogenic functions of β-PDGFR ligands PDGF B and PDGF D, using nonmalignant prostate epithelial cells engineered to overexpress these ligands.

View Article and Find Full Text PDF

Platelet-derived growth factor (PDGF) family members are potent growth factors that regulate cell proliferation, migration, and transformation. Clinical studies have shown that both PDGF receptor β (β-PDGFR) and its ligand PDGF D are up-regulated in primary prostate cancers and bone metastases, whereas PDGF B, a classic ligand for β-PDGFR, is not frequently detected in clinical samples. In this study, we examined the role of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of PDGF expression levels using both a prostate-specific, conditional PTEN-knockout mouse model and mouse prostate epithelial cell lines established from these mice.

View Article and Find Full Text PDF

Jumonji (JMJ) can function as a transcriptional repressor and plays critical roles in embryonic development including heart development in mice. Although JMJ has been suggested to play a role in cell growth, the molecular mechanisms have not been resolved. The present data demonstrate that JMJ interacts with the retinoblastoma protein (Rb), one of the master regulatory genes of cell cycle.

View Article and Find Full Text PDF

We investigated the role of galectin-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic death in human breast carcinoma BT549 cells. We observed that parental galectin-3 null BT549 cells (BT549(par)) as well as control vector transfected (BT549(neo)) cells were resistant to TRAIL, while galectin-3 cDNA-transfected BT549 cells (BT549(gal-3)) were sensitive to TRAIL. Data from flow cytometry and immunoblotting analyses reveal that reconstitution of galectin-3 promoted cell death and PARP cleavage as well as caspase (-8, -9, and -3) activation during TRAIL treatment.

View Article and Find Full Text PDF