Huge volume changes of silicon particles upon alloying and dealloying reactions with lithium are a major reason for the poor cycle performance of silicon-based anodes for lithium-ion batteries. To suppress dimensional changes of silicon is a key strategy in attempts to improve the electrochemical performance of silicon-based anodes. Here, we demonstrate that a conductive agent can be exploited to offset the mechanical strain imposed on silicon electrodes caused by volume expansion of silicon associated with lithiation.
View Article and Find Full Text PDFChem Commun (Camb)
October 2017
We report foamed Si particles as a high-performance lithium storage material prepared by a milling-assisted alkaline etching process. The resulting foamed Si electrode showed excellent cycling performance of over 300 cycles with an initial discharge capacity of about 2750 mA h g.
View Article and Find Full Text PDFCarbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles.
View Article and Find Full Text PDF