Microscale thermal signature control using incoherent heat sources remains challenging, despite recent advancements in plasmonic materials and phase-change materials. Inspired by leafhopper-generated brochosomes, we design binary metastructures functioning as pixel twins to achieve pixelated thermal signature control at the microscale. In the infrared range, the pixel twins exhibit distinct emissivities, creating thermal counterparts of "0-1" binary states for storing and displaying information.
View Article and Find Full Text PDFSensors on autonomous vehicles have inherent physical constraints. To address these limitations, several studies have been conducted to enhance sensing capabilities by establishing wireless communication between infrastructure and autonomous vehicles. Various sensors are strategically positioned within the road infrastructure, providing essential sensory data to these vehicles.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
Nanogap slits can operate as a plasmonic Fabry-Perot cavity in the visible and infrared ranges due to the gap plasmon with an increased wavenumber. Although the properties of gap plasmon are highly dependent on the gap width, active width tuning of the plasmonic cavity over the wafer length scale was barely realized. Recently, the fabrication of nanogap slits on a flexible substrate was demonstrated to show that the width can be adjusted by bending the flexible substrate.
View Article and Find Full Text PDFMetallic nanostructures play an essential role in electromagnetic manipulations due to the localization and enhancement of electromagnetic waves in nanogaps. Scaling down the dimensions of the gap, such as the gap width and the thickness, is an effective way to enhance light-matter interaction with colossal field enhancement. However, reducing the thickness below 10 nanometers still suffers from fabrication difficulty and unintended direct transmission through metals.
View Article and Find Full Text PDFOne of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries.
View Article and Find Full Text PDFArrays of van der Waals gaps were manufactured by synthesizing the vertically aligned graphene layer stacked between two copper (Cu) catalytic films. The Cu-graphene-Cu laminated structure was obtained by directly synthesizing graphene on a patterned Cu film followed by depositing a second copper layer for optical measurements. The synthesis of graphene on the Cu surface was optimized by adjusting the synthesis temperatures and pre-annealing time using plasma enhanced chemical vapor deposition (PECVD).
View Article and Find Full Text PDF