Publications by authors named "Hyeon-Tak Kwak"

We demonstrate a near-infrared (NIR) photodiode (PD) by using a wave-shaped sidewall silicon nanopillars (WS-SiNPs) structure. The designed WS sidewall nanostructure increases the horizontal component of incident light and induces multiple whispering-gallery modes with low-quality factor, which increases the light absorption path. Thus, the WS-SiNP PD shows improved spectral responsivity and external quantum efficiency over straight sidewall silicon nanopillars and planar PDs in the NIR region.

View Article and Find Full Text PDF

Three-terminal (3-T) thyristor random-access memory is explored for a next-generation high-density nanoscale vertical cross-point array. The effects of standby voltages on the device are thoroughly investigated in terms of gate-cathode voltage (V) and anode-cathode voltage (V) in the standby state for superior data retention characteristics and low-power operation. The device with the optimized V of - 0.

View Article and Find Full Text PDF

We investigate DC characteristics of AlGaN/GaN high-electron mobility transistors by using a source-bridged field plate and additional bottom plate (BP) structure. The analysis of experimental data was performed with a two-dimensional simulator. Source connected BP structure stabilized threshold voltage and transconductance regardless of various drain voltages.

View Article and Find Full Text PDF

We optimize various gate head structures to improve breakdown voltage characteristics of AlGaN/GaN high-electron mobility transistors by a two-dimensional device simulator based on a T-shaped gate-connected field-plate. Field-plates (FPs) alleviate electric field spikes near the gate and drain-side overlapping edges, which eventually disperse electron avalanche and charge trapping effects. Hence, the more uniform electric field distribution provides improved breakdown voltage of the device.

View Article and Find Full Text PDF

In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure.

View Article and Find Full Text PDF