Silicon is an attractive anode material for lithium-ion batteries (LIBs) because of its natural abundance and excellent theoretical energy density. However, Si-based electrodes are difficult to commercialize because of their significant volume changes during lithiation that can result in mechanical damage. To overcome this limitation, we synthesized an eco-friendly water-soluble polyimide (W-PI) precursor, poly(amic acid) salt (W-PAmAS), as a binder for Si anodes via a simple one-step process using water as a solvent.
View Article and Find Full Text PDFLi metal thickness has been considered a key factor in determining the electrochemical performance of Li metal anodes. The use of thin Li metal anodes is a prerequisite for increasing the energy density of Li secondary batteries intended for emerging large-scale electrical applications, such as electric vehicles and energy storage systems. To utilize thin (20 μm thick) Li metal anodes in Li metal secondary batteries, we investigated the synergistic effect of a functional additive (Li nitrate, LiNO) and a dual-salt electrolyte (DSE) system composed of Li bis(fluorosulfonyl)imide (LiTFSI) and Li bis(oxalate)borate (LiBOB).
View Article and Find Full Text PDFA method of microalgae-templated spray drying to develop hierarchical porous FeO/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the FeO/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g after 700 cycles at a current density of 1 A/g.
View Article and Find Full Text PDFTo inhibit Li-dendrite growth on lithium (Li)-metal electrodes, which causes capacity deterioration and safety issues in Li-ion batteries, we prepared a porous polyimide (PI) sponge using a solution-processable high internal-phase emulsion technique with a water-soluble PI precursor solution; the process is not only simple but also environmentally friendly. The prepared PI sponge was processed into porous PI separators and used for Li-metal electrodes. The physical properties (e.
View Article and Find Full Text PDF