Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.
View Article and Find Full Text PDFIridium single atom catalysts are promising oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane water electrolysis (PEMWE), as they can reduce the reliance on costly Ir in the OER catalysts. However, their practical application is hindered by their limited stability during PEMWE operation. Herein, we report on the activation of Ir-doped CoMnO in acidic electrolyte that leads to enhanced activity and stability in acidic OER for long-term PEMWE operation.
View Article and Find Full Text PDFEnzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.
View Article and Find Full Text PDFBackground: Increasing concern has recently been highlighted regarding crop damage due to extreme weather events caused by global warming and the increased production of ground-level ozone. Several studies have investigated rice growth in response to fertilization conditions under various environmental stress conditions; however, studies on growth development in response to fertilization conditions under combined high-temperature/ozone treatment conditions are scarce. In this study, we aimed investigate the growth and physiological development of rice under combined high temperature and ozone treatment conditions and to reveal the damage-mitigation effects of NPK fertilization treatments.
View Article and Find Full Text PDFTransition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis.
View Article and Find Full Text PDFSalt stress is a significant abiotic stress that reduces crop yield and quality globally. In this study, we utilized RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in response to salt stress induced by gamma-ray irradiation in a salt-tolerant soybean mutant. The total RNA library samples were obtained from the salt-sensitive soybean cultivar Kwangan and the salt-tolerant mutant KA-1285.
View Article and Find Full Text PDFMulti-metal oxides in general and perovskite oxides in particular have attracted considerable attention as oxygen evolution electrocatalysts. Although numerous theoretical studies have been undertaken, the most promising perovskite-based catalysts continue to emerge from human-driven experimental campaigns rather than data-driven machine learning protocols, which are often limited by the scarcity of experimental data on which to train the models. This work promises to break this impasse by demonstrating that active learning on even small datasets-but supplemented by informative structural-characterization data and coupled with closed-loop experimentation-can yield materials of outstanding performance.
View Article and Find Full Text PDFOne major quantitative trait loci and candidate gene for salt tolerance were identified on chromosome 3 from a new soybean mutant derived from gamma-ray irradiation, which will provide a new genetic resource for improving soybean salt tolerance. Soil salinity is a worldwide problem that reduces crop yields, but the development of salt-tolerant crops can help overcome this challenge. This study was conducted with the purpose of evaluating the morpho-physiological and genetic characteristics of a new salt-tolerant mutant KA-1285 developed using gamma-ray irradiation in soybean (Glycine max L.
View Article and Find Full Text PDFSingle-atom nanozymes (SAzymes) are considered promising alternatives to natural enzymes. The catalytic performance of SAzymes featuring homogeneous, well-defined active structures can be enhanced through elucidating structure-activity relationship and tailoring physicochemical properties. However, manipulating enzymatic properties through structural variation is an underdeveloped approach.
View Article and Find Full Text PDFEnvironmental damage from serious nuclear accidents should be urgently restored, which needs the removal of radioactive species. Radioactive iodine isotopes are particularly problematic for human health because they are released in large amounts and retain radioactivity for a substantial time. Herein, we prepare platinum-coated iron nanoparticles (Fe@Pt) as a highly selective and reusable adsorbent for iodine species, i.
View Article and Find Full Text PDFNitrogen-containing polycyclic aromatic hydrocarbon (PAH) is the single basic moiety in N-doped graphene, the only metal-free catalyst reported to date to successfully produce the oxygen reduction reaction. N-doped graphene is quite promising as a material to increase the efficiency of oxygen reduction. In addition, it is known that when carbon dioxide is added to aza-benzene, there will be an associative chemical reaction upon electron attachment between the anionic nitrogen atoms in the aza-benzene and the carbon atom in the carbon dioxide; however, it has previously been reported that when there are more nitrogen atoms in the small aza-benzene moiety, the associative reaction does not always occur.
View Article and Find Full Text PDFMulti-metal oxide (MMO) materials have significant potential to facilitate various demanding reactions by providing additional degrees of freedom in catalyst design. However, a fundamental understanding of the (electro)catalytic activity of MMOs is limited because of the intrinsic complexity of their multi-element nature. Additional complexities arise when MMO catalysts have crystalline structures with two different metal site occupancies, such as the spinel structure, which makes it more challenging to investigate the origin of the (electro)catalytic activity of MMOs.
View Article and Find Full Text PDFSolution-based thin-film solidification is a complex process involving various transport phenomena that are intricately dependent on multiple experimental parameters. The difficulty of analyzing this process experimentally or conducting exact numerical simulation make it challenging to understand, predict, and control the solidification process. In this work, a simple and effective technique to analyze the thin-film solidification process during solution shearing, based on 3D geometrical model of the meniscus, is proposed.
View Article and Find Full Text PDFTransplanting is an important rice cultivation method; however, transplanting shock commonly affects grain yield, and the mechanisms underlying the inhibition of growth, development, and delayed heading caused by transplanting shock have not yet been clearly elucidated. Here, we investigated the effects of seedling age, temperature, and root damage during transplanting on growth, development, and time to heading, both under artificially controlled and natural day length. Additionally, we investigated the impact of seedling root growth space and the potential mitigating effects of residual seed nutrients on young transplanted seedlings.
View Article and Find Full Text PDFPd is one of the most effective catalysts for the electrochemical reduction of CO to formate, a valuable liquid product, at low overpotential. However, the intrinsically high CO affinity of Pd makes the surface vulnerable to CO poisoning, resulting in rapid catalyst deactivation during CO electroreduction. Herein, we utilize the interaction between metals and metal-organic frameworks to synthesize atomically dispersed Au on tensile-strained Pd nanoparticles showing significantly improved formate production activity, selectivity, and stability with high CO tolerance.
View Article and Find Full Text PDFIntroduction: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated fibroinflammatory disorder characterized by specific pathologic findings and often, but not in all cases, elevated serum IgG4 concentration. Although it can virtually involve every organ system, cases involving the gastrointestinal tract and especially gastric mass lesions have rarely been reported.
Patient Concerns: A 45-year-old man, who was incidentally discovered asymptomatic subepithelial tumor (SET), by endoscopy, on the greater curvature of the upper gastric body, was referred to our hospital for further evaluation.
Compared to nanostructured platinum (Pt) catalysts, ordered Pt-based intermetallic nanoparticles supported on a carbon substrate exhibit much enhanced catalytic performance, especially in fuel cell electrocatalysis. However, direct synthesis of homogeneous intermetallic alloy nanocatalysts on carbonaceous supports with high loading is still challenging. Herein, we report a novel synthetic strategy to directly produce highly dispersed MPt alloy nanoparticles (M = Fe, Co, or Ni) on various carbon supports with high catalyst loading.
View Article and Find Full Text PDFIntegrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO as a model intercalation compound.
View Article and Find Full Text PDFPurpose: To evaluate topographic changes in choroidal thickness during development of choroidal neovascularization (CNV) in treatment-naive age-related macular degeneration (AMD) and to test the value of such changes as a predictive tool of CNV development.
Methods: This retrospective cohort included 86 eyes that developed CNV from intermediate AMD, 43 eyes with intermediate AMD, and 36 eyes without AMD. Patients with intermediate AMD underwent spectral domain optical coherence tomography using enhanced depth imaging mode every 6 months until CNV was detected.
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, HO can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes.
View Article and Find Full Text PDFWe report a facile two-step method to synthesize nanostructured P2-Na2/3MnO2via ligand exchange and intercalation of sodium ions into ultrathin manganese oxide nanoplates. Sodium storage performance of the synthesized material shows a high capacity (170 mA h g-1) and an excellent rate performance.
View Article and Find Full Text PDFBackground: Research on the submergence stress of rice has concentrated on the quiescence strategy to survive in long-term flooding conditions based on Submergence-1A (SUB1A). In the case of the ripening period, it is important that submergence stress can affect the quality as well as the survival of rice. Therefore, it is essential to understand the changes in the distribution of assimilation products in grain and ripening characteristics in submergence stress conditions.
View Article and Find Full Text PDFThe effect of porous structures on the electrocatalytic activity of N-doped carbon is studied by using electrochemical analysis techniques and the result is applied to synthesize highly active and stable Fe-N-C catalyst for oxygen reduction reaction (ORR). We developed synthetic procedures to prepare three types of N-doped carbon model catalysts that are designed for systematic comparison of the porous structures. The difference in their catalytic activity is investigated in relation to the surface area and the electrochemical parameters.
View Article and Find Full Text PDF