Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.
View Article and Find Full Text PDFIn vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, which is inherently time-consuming and can lead to participant discomfort, thus posing limitations in clinical settings.
View Article and Find Full Text PDFThe morphology of the brain undergoes changes throughout the aging process, and accurately predicting a person's brain age and gender using brain morphology features can aid in detecting atypical brain patterns. Neuroimaging-based estimation of brain age is commonly used to assess an individual's brain health relative to a typical aging trajectory, while accurately classifying gender from neuroimaging data offers valuable insights into the inherent neurological differences between males and females. In this study, we aimed to compare the efficacy of classical machine learning models with that of a quantum machine learning method called a variational quantum circuit in estimating brain age and predicting gender based on structural magnetic resonance imaging data.
View Article and Find Full Text PDFEven though many previous studies have reported structural or functional brain abnormalities in patients with alcohol dependence (ADPs), studies observing the structural and functional abnormalities associated with the clinical characteristics of ADPs utilizing a multimodal approach are still scarce. The aim of this study was to demonstrate structural and functional brain abnormalities and their association with the clinical characteristics of alcoholism in male ADPs. Fifteen healthy male controls (HCs) and 15 male ADPs who had been diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders 5 criteria underwent T1-weighted imaging and resting-state functional magnetic resonance imaging (MRI) scans.
View Article and Find Full Text PDF(SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO.
View Article and Find Full Text PDFIn vivo short echo time (TE) proton magnetic resonance spectroscopy (H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare it with the performance of a vendor-provided basis set. A 3T clinical scanner with 32-channel receive-only phased array head coil was used to generate 16 brain metabolites for the metabolite basis set.
View Article and Find Full Text PDFThis study aimed to investigate morphological and metabolic changes in the brains of 5xFAD mice. Structural magnetic resonance imaging (MRI) and H magnetic resonance spectroscopy (MRS) were obtained in 10- and 14-month-old 5xFAD and wild-type (WT) mice, while P MRS scans were acquired in 11-month-old mice. Significantly reduced gray matter (GM) was identified by voxel-based morphometry (VBM) in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice compared to WT mice.
View Article and Find Full Text PDFThe pathology of Parkinson's disease (PD) involves the death of dopaminergic neurons in the substantia nigra (SN), which slowly influences downstream basal ganglia pathways as dopamine transport diminishes. Diffusion magnetic resonance imaging (MRI) has been used to diagnose PD by assessing white matter connectivity in some brain areas. For this study, we applied Lead-DBS to human connectome project data to automatically segment 11 subcortical structures of 49 human connectome project subjects, reducing the reliance on manual segmentation for more consistency.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) is a noninvasive technique for measuring metabolite concentration. It can be used for preclinical small animal brain studies using rodents to provide information about neurodegenerative diseases and metabolic disorders. However, data acquisition from small volumes in a limited scan time is technically challenging due to its inherently low sensitivity.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive fibroblast-like synoviocytes (FLSs) and pannus formation. Various therapeutic strategies have been developed against inflammatory cytokines in RA in recent decades. Based on the migratory features of FLSs, we examined whether modulation of the migratory module attenuates RA severity.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by cardinal motor symptoms and other non-motor symptoms. Studies have investigated various brain areas in PD by detecting white matter alterations using diffusion magnetic resonance imaging processing techniques, which can produce diffusion metrics such as fractional anisotropy and quantitative anisotropy. In this study, we compared the quantitative anisotropy of whole brain regions throughout the subcortical and cortical areas between newly diagnosed PD patients and healthy controls.
View Article and Find Full Text PDFMany studies have reported structural or functional brain changes in patients with alcohol-dependence (ADPs). However, there has been an insufficient number of studies that were able to identify functional changes along with structural abnormalities in ADPs. Since neuronal cell death can lead to abnormal brain function, a multimodal approach combined with structural and functional studies is necessary to understand definitive neural mechanisms.
View Article and Find Full Text PDFNeuroscience
February 2022
Analysis of the basal ganglia has been important in investigating the effects of Parkinson's disease as well as treatments for Parkinson's disease. One method of analysis has been using MRI for non-invasively segmenting the basal ganglia, then investigating significant parameters that involve the basal ganglia, such as fiber orientations and positional markers for deep brain stimulation (DBS). Following enhancements to optimizations and improvements to 3T and 7T MRI acquisitions, we utilized Lead-DBS on human connectome project data to automatically segment the basal ganglia of 49 human connectome project subjects, reducing the reliance on manual segmentation for more consistency.
View Article and Find Full Text PDFPreclinical studies using rodents have been the choice for many neuroscience researchers due totheir close reflection of human biology. In particular, research involving rodents has utilized MRI to accurately identify brain regions and characteristics by acquiring high resolution cavity images with different contrasts non-invasively, and this has resulted in high reproducibility and throughput. In addition, tractographic analysis using diffusion tensor imaging to obtain information on the neural structure of white matter has emerged as a major methodology in the field of neuroscience due to its contribution in discovering significant correlations between altered neural connections and various neurological and psychiatric diseases.
View Article and Find Full Text PDFHistorically, studies have extensively examined the basal ganglia in Parkinson's disease for specific characteristics that can be observed with medical imaging. One particular methodology used for detecting changes that occur in Parkinson's disease brains is diffusion tensor imaging, which yields diffusion indices such as fractional anisotropy and radial diffusivity that have been shown to correlate with axonal damage. In this study, we compare the diffusion measures of basal ganglia structures (with substantia nigra divided into subregions, pars compacta, and pars reticula), as well as the diffusion measures of the diffusion tracts that pass through each pair of basal ganglia structures to see if significant differences in diffusion measures can be observed in structures or tracts in newly diagnosed Parkinson's disease patients.
View Article and Find Full Text PDFObjective: The present study applied in vivo proton magnetic resonance spectroscopy (H MRS) to concurrently measure the concentration and T2 relaxation time of glutamate with the concept of optimized-for-quantification-and-T2-measurement-of-glutamate (OpQT2-Glu).
Materials And Methods: 7T MRS scans of the OpQT2-Glu were acquired from the prefrontal cortex of five rats. The echo-time-(TE)-specific J-modulation of glutamate was investigated by spectral simulations and analyses for selecting the eight TEs appropriate for T2 estimation of glutamate.
An important challenge in Parkinson's disease (PD) based neuroscience and neuroimaging is mapping the neuronal connectivity of the basal ganglia to understand how the disease affects brain circuitry. However, a majority of diffusion tractography studies have shown difficulties in revealing connections between distant anatomic brain regions and visualizing basal ganglia connectome. In this current study, we investigated the differences in basal ganglia connectivity between 6-OHDA induced PD mouse model and normal mouse model by using diffusion tensor imaging tractography from diffusion-weighted images obtained with a high resolution 9.
View Article and Find Full Text PDFThe purpose of the present study was to develop a hybrid magnetic resonance/computed tomography (MR/CT)-compatible phantom and tissue-equivalent materials for each MR and CT image. Therefore, the essential requirements necessary for the development of a hybrid MR/CT-compatible phantom were determined and the development process is described. A total of 12 different tissue-equivalent materials for each MR and CT image were developed from chemical components.
View Article and Find Full Text PDFThe morphological changes of the brain, particularly in the integrity of white and gray matter and the cortical thickness of brain, have been investigated extensively in obese patients. While there has been a growing amount of evidence indicating that subcortical structures are associated with obesity, studies on the volume of subregional level including shape alterations using high-field MRI are very sparse. The aim of this study was to evaluate and compare the volumes of 14 subcortical structures (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) in obese and normal-weighted subjects using 3T MRI for high resolution imaging.
View Article and Find Full Text PDFLittle is known about the underlying metabolic alterations of gliomas. The objective of this study was to analyze metabolomic profiles of gliomas diagnosed according to revised WHO classification to demonstrate metabolic signatures beyond isocitrate dehydrogenase (IDH) 1/2 mutation. H NMR spectroscopy of tumor extracts was performed to analyze brain tumor metabolism.
View Article and Find Full Text PDFOver the years, diffusion tractography has seen increasing use for comparing minute differences in connectivity of brain structures in neurodegenerative diseases and treatments. Studies on connectivity between basal ganglia has been a focal point for studying the effects of diseases such as Parkinson's and Alzheimer's, as well as the effects of treatments such as deep brain stimulation. Additionally, in previous studies, diffusion tractography was utilized in disease mouse models to identify white matter alterations, as well as biomarkers that occur in the progression of disease.
View Article and Find Full Text PDFChanges in brain morphometry have been extensively reported in various studies examining the effects of chronic alcohol use in alcohol-dependent patients. Such studies were able to confirm the association between chronic alcohol use and volumetric reductions in subcortical structures using FSL (FMRIB software library). However, each study that utilized FSL had different sets of subcortical structures that showed significant volumetric reduction.
View Article and Find Full Text PDFObjective: Social defeat represents a naturalistic form of conditioned fear and is often used as an animal model of depression. The present study aimed to identify the neurochemicals in select brain regions of mice exposed to social defeat stress.
Methods: Adult C57BL/6N mice were subjected social defeat stress for 10 days.
Purpose: To perform in vitro high-resolution 900 MHz magnetic resonance spectroscopy (NMR) analysis of human brain tumor tissue extracts and analyze for the oncometabolite 2-hydroxyglutarate (2HG) and other brain metabolites, not only for 1H but also for 13C with indirect detection by heteronuclear single quantum correlation (HSQC).
Material And Methods: Four surgically removed human brain tumor tissue samples were used for extraction and preparation of NMR samples. These tissue samples were extracted with 4% perchloric acid and chloroform, freeze-dried, then dissolved into 0.
Purpose: The aim of this study was to find useful metabolites to predict lymph node (LN) metastasis in patients with papillary thyroid cancer (PTC) through a metabolomics approach and investigate the potential role of metabolites as a novel prognostic marker.
Materials And Methods: Fifty-two consecutive patients (median age: 41.5 years, range 15-74 years) were enrolled who underwent total thyroidectomy and central LN dissection with or without lateral LN dissection in Severance Hospital between October 2013 and July 2015.