A clinically viable technology for comprehensive esophagus surveillance and potential treatment is lacking. Here, we report a novel multifunctional ablative gastrointestinal imaging capsule (MAGIC) technology platform to address this clinical need. The MAGIC technology could also facilitate the clinical translation and adoption of the tethered capsule endomicroscopy (TCE) technology.
View Article and Find Full Text PDFNADH intensity and fluorescence lifetime characteristics have proved valuable intrinsic biomarkers for profiling the cellular metabolic status of living biological tissues. To fully leverage the potential of NADH fluorescence lifetime imaging microscopy (FLIM) in (pre)clinical studies and translational applications, a compact and flexible endomicroscopic embodiment is essential. Herein we present our newly developed two-photon fluorescence (2PF) lifetime imaging endomicroscope (2p-FLeM) that features an about 2 mm diameter, subcellular resolution, and excellent emission photon utilization efficiency and can extract NADH lifetime parameters of living tissues and organs reliably using a safe excitation power (~30 mW) and moderate pixel dwelling time (≤10 s).
View Article and Find Full Text PDFObjective/background: In vivo imaging and quantification of the microstructures of small airways in three dimensions (3D) allows a better understanding and management of airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). At present, the resolution and contrast of the currently available conventional optical coherence tomography (OCT) imaging technologies operating at 1300 nm remain challenging to directly visualize the fine microstructures of small airways in vivo.
Methods: We developed an ultrahigh-resolution diffractive endoscopic OCT at 800 nm to afford a resolving power of 1.
Rationale And Objectives: At present, there is no available method to study the in vivo microstructures of the airway wall (epithelium, smooth muscle, adventitia, basement membrane, glands, cartilage). Currently, we rely on ex vivo histologic evaluation of airway biopsies. To overcome this obstacle, we have developed an endoscopic ultrahigh-resolution diffractive optical coherence tomography (OCT) system, operating at a wavelength of 800 nm, to non-invasively study the in vivo microstructures of the airway wall.
View Article and Find Full Text PDFOCT-based quantitative tissue optical properties imaging is a promising technique for intraoperative brain cancer assessment. The attenuation coefficient analysis relies on the depth-dependent OCT intensity profile, thus sensitive to tissue surface positions relative to the imaging beam focus. However, it is almost impossible to maintain a steady tissue surface during intraoperative imaging due to the patient's arterial pulsation and breathing, the operator's motion, and the complex tissue surface geometry of the surgical cavity.
View Article and Find Full Text PDFFrozen section and smear preparation are the current standard for intraoperative histopathology during cancer surgery. However, these methods are time-consuming and subject to limited sampling. Multiphoton microscopy (MPM) is a high-resolution non-destructive imaging technique capable of optical sectioning in real time with subcellular resolution.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2020
Compactness, among several others, is one unique and very attractive feature of a scanning fiber-optic two-photon endomicroscope. To increase the scanning area and the total number of resolvable pixels (i.e.
View Article and Find Full Text PDFAn ultra-sensitive, wide-range force loading scheme is proposed for compression optical coherence elastography (OCE) that allows for the quantitative analysis of cervical tissue elasticity . We designed a force loading apparatus featuring a water sink for minuscule incremental loading through a volume-controlled water droplet, from which the Young's modulus can be calculated by fitting the stress-strain curve. We validated the performance of the proposed OCE system on homogenous agar phantoms, showing the Young's modulus can be accurately estimated using this scheme.
View Article and Find Full Text PDFWe report an ultralow-voltage, electrothermal (ET) micro-electro-mechanical system (MEMS) based probe for forward-viewing endoscopic optical coherence tomography (OCT) imaging. The fully assembled probe has a diameter of 5.5 mm and a length of 55 mm, including the imaging optics and a 40 mm long fiber-optic cantilever attached on a micro-platform of the bimorph ET MEMS actuator.
View Article and Find Full Text PDFEndoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8-20 μm. In this paper, we present the first ultrahigh-resolution tethered OCT capsule operating at 800 nm and offering about 3- to 4-fold improvement of axial resolution (plus enhanced imaging contrast).
View Article and Find Full Text PDFWe report the development of a broadband rotary joint for high-speed ultrahigh-resolution endoscopic optical coherence tomography (OCT) imaging in the 800 nm spectral range. This rotary joint features a pair of achromatic doublets in order to achieve broadband operation for a 3 dB bandwidth over 150 nm. The measured one-way throughput of the rotary joint is greater than 80%, while the fluctuation of the double-pass coupling efficiency during 360 deg rotation is less than ±5% at a near video-rate speed of 20 revolutions/s (rps).
View Article and Find Full Text PDFWe report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion.
View Article and Find Full Text PDFSilver nanowires have attracted much attention for use in flexible transparent conductive films (TCFs) due to their low sheet resistance and flexibility. However, the haze was too high for replacing indium-tin-oxide in high-quality display devices. Herein, we report flexible TCFs, which were prepared using a scalable bar-coating method, with a low sheet resistance (24.
View Article and Find Full Text PDFObjective: To evaluate clinical and microbiological features in patients with nursing and healthcare-associated pneumonia (NHCAP), admitted to the intensive care unit (ICU).
Methods: Demographic, clinical and microbiological data were retrospectively reviewed from patients with NHCAP admitted to a respiratory ICU. Patients were categorized into one of four NHCAP groups: (A) residence in a long-term nursing-home setting or healthcare home; (B) hospital discharge in the preceding 90 days; (C) elderly or physically disabled patients who stay at home but require healthcare; (D) continuously receiving outpatient endovascular therapy including chronic dialysis, anticancer drugs, and immunosuppressants.
This work reports micromachined tethered silicon oscillators (MTSOs) for endoscopic Lissajous fiber scanners. An MTSO comprises an offset silicon spring for stiffness modulation of a scanning fiber and additional mass for modulation of resonant scanning frequency in one body. MTSOs were assembled with a resonant fiber scanner and enhanced scanning reliability of the scanner by eliminating mechanical cross coupling.
View Article and Find Full Text PDF