The power conversion efficiency (PCE) of polymer solar cells (PSCs) has recently reached >19% through the development of photoactive materials, particularly non-fullerene acceptors. Interfacial layers (ILs) have been another essential factor in optimizing device charge extraction. In this study, we propose a series of ILs, in which ionic iridium(III) (Ir(III)) complexes of different alkali metal cations (Li, Na, and K) enhance the charge collection efficiency between zinc oxide and active layers through an induced internal electric field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and cross-linked microporous structures. However, the fabrication of nano- and microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution.
View Article and Find Full Text PDFThe direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
Dye distribution in a mesoporous TiO film is a key factor in the performance of dye-sensitized solar cells, but there has been little research on it. Here we report even dye distribution within the porous TiO film achieved by a physical driving force of gas flow. Gas-assisted dye arrangement, gas bubbling soaking (GBS), significantly accelerates the dye infiltration compared to conventional overnight soaking (OS).
View Article and Find Full Text PDF