Air pollution causes and exacerbates allergic diseases including asthma, allergic rhinitis, and atopic dermatitis. Precise prediction of the number of patients afflicted with these diseases and analysis of the environmental conditions that contribute to disease outbreaks play crucial roles in the effective management of hospital services. Therefore, this study aims to predict the daily number of patients with these allergic diseases and determine the impact of particulate matter (PM10) on each disease.
View Article and Find Full Text PDFBackground: Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants.
View Article and Find Full Text PDFThe present study evaluates the physicochemical properties of maple leaf-derived biochars (M-BCs) produced at different pyrolytic temperatures (i.e., 350, 550, and 750 °C) and their adsorptive properties for tetracycline onto M-BCs.
View Article and Find Full Text PDFCorrection for 'The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct' by In-Hu Choe, et al., Food Funct., 2016, 7, 2557-2565.
View Article and Find Full Text PDFIn this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2015
Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus.
View Article and Find Full Text PDFIn this study, a novel algal biomass production method using a sediment microbial fuel cell (SMFC) system was assessed. Under the experimental conditions, CO(2) generation from the SMFC and its rate of increase were found to be dependent on the current generated from the SMFC. However, the CH(4) production rate from the SMFC was inhibited by the generation of current.
View Article and Find Full Text PDF