Publications by authors named "Hyeon Guk Kim"

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic worldwide. As of September 2023, the number of confirmed coronavirus cases has reached over 770 million and caused nearly 7 million deaths. The World Health Organization assigned and informed the characterization of variants of concern (VOCs) to help control the COVID-19 pandemic through global monitoring of circulating viruses.

View Article and Find Full Text PDF

Objectives: Vaccinations against diphtheria and tetanus are essential in providing immunity against these bacterial infections. The potency of diphtheria and tetanus toxoid vaccines can be measured using the in vivo toxin neutralization assay. The limit of potency of this assay was determined only for children.

View Article and Find Full Text PDF

SicA functions both as a class II chaperone for SipB and SipC of the type III secretion system (T3SS)-1 and as a transcriptional cofactor for the AraC-type transcription factor InvF in Salmonella enterica subsp. enterica serovar Typhimurium. Bioinformatic analysis has predicted that SicA possesses three tetratricopeptide repeat (TPR)-like motifs, which are important for protein-protein interactions and serve as multiprotein complex mediators.

View Article and Find Full Text PDF

The type III secretion systems (T3SSs) are exploited by many Gram-negative pathogenic bacteria to deliver a set of effector proteins into the host cytosol during cell entry. The T3SS of Salmonella enterica serovar Typhimurium is composed of more than 20 proteins that constitute the membrane-associated base, the needle and the tip complex at the distal end of the T3SS needle. Membrane docking and piercing between the T3SS and host cells is followed by the secretion of effector proteins.

View Article and Find Full Text PDF

Live attenuated bacteria can be used as a carrier for the delivery of foreign antigens to a host's immune system. The N-terminal domain of SipB, a translocon protein of the type III secretion system of Salmonella enterica serovar Typhimurium, is required for secretion and outer membrane localization. In the present study, vaccine plasmids for antigen delivery in which the non-toxic tetanus toxin fragment C (TTFC), which contains a T cell epitope, is fused to the N-terminal 160 amino acids of SipB were developed.

View Article and Find Full Text PDF

Flagella are surface appendages that are important for bacterial motility and invasion of host cells. Two flagellin subunits in Salmonella enterica serovar Typhimurium, FliC and FljB, are alternatively expressed by a site-specific DNA inversion mechanism called flagellar phase variation. Although this inversion mechanism is understood at the molecular level, the key factor controlling the expression of the two flagellin subunits has not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed histone proteins and their modifications in a novel HIV-1 latently infected cell line (NCHA cells) to gain insights into the mechanisms behind HIV-1 latency.
  • * Findings indicate that tri-methylation of histone H3K27 and increased ubiquitylation of histone H2A are implicated in the epigenetic silencing responsible for maintaining HIV-1 latency.
View Article and Find Full Text PDF

Gram-negative bacteria, including Salmonella enterica serovar Typhimurium, exploit type III secretion systems (T3SSs) through which virulence proteins are delivered into the host cytosol to reinforce invasive and replicative niches in their host. Although many secreted effector proteins and membrane-bound structural proteins in the T3SS have been characterized, the functions of many cytoplasmic proteins still remain unknown. In this study, we found that IacP, encoded by Salmonella pathogenicity island 1, was important for nonphagocytic cell invasion and bacterial virulence.

View Article and Find Full Text PDF

HIV-1 can establish a latent infection in memory CD4+T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.

View Article and Find Full Text PDF

The Puu pathway is a putrescine utilization pathway involving gamma-glutamyl intermediates. The genes encoding the enzymes of the Puu pathway form a gene cluster, the puu gene cluster, and puuP is one of the genes in this cluster. In Escherichia coli, three putrescine importers, PotFGHI, PotABCD, and PotE, were discovered in the 1990s and have been studied; however, PuuP had not been discovered previously.

View Article and Find Full Text PDF

SipB, one of the invasion proteins encoded in Salmonella pathogenicity island 1 (SPI-1), is known to be secreted outside the cell, where it functions as a translocon by assembling into a host-cell plasma membrane-integral structure. Here, we confirmed that wild-type SipB could be localized to the bacterial outer membrane, and further showed that its localization was dependent on extracellular secretion, and was independent of the presence of the SipD protein. Proteinase K susceptibility and immunofluorescence assays indicated that SipB was not incorporated into the outer membrane, but rather was displayed on the bacterial surface.

View Article and Find Full Text PDF

SipB (593 aa), one of the Salmonella invasion proteins (Sips), is secreted via the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Here, we report the delineation of several functional regions present in the SipB protein. Our data show that residues 3-8 of the SipB protein are essential for its secretion from the bacterial cell and that the SicA chaperone, which is important to ensure stability of SipB and SipC in the bacterial cytosol, binds to SipB somewhere between amino acids 80 and100 of the SipB N-terminal region.

View Article and Find Full Text PDF

The formation of cyclopropane fatty acid (CFA) and its role in the acid shock response in Salmonella enterica serovar Typhimurium (S. typhimurium) was investigated. Data obtained by GC/MS demonstrated that the CFA level in S.

View Article and Find Full Text PDF

A novel bacterial putrescine utilization pathway was discovered. Seven genes, the functions of whose products were not known, are involved in this novel pathway. Five of them encode enzymes that catabolize putrescine; one encodes a putrescine importer, and the other encodes a transcriptional regulator.

View Article and Find Full Text PDF

Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures.

View Article and Find Full Text PDF

The gene cspH, which encodes one of the cold-shock proteins in Salmonella enterica serovar Typhimurium, has previously been reported to be induced during early exponential phase at 37 degrees C. In the present study, the expression of cspH upon nutrient up-shift at 37 degrees C was investigated and found to be affected by DNA gyrase and DNA-binding protein Fis. When cells at stationary phase were subcultured into a rich medium, the mRNA level of cspH increased dramatically prior to the first cell division.

View Article and Find Full Text PDF