Immunotherapy has a number of advantages over traditional anti-tumor therapy but can cause severe adverse reactions due to an overactive immune system. In contrast, a novel metabolic treatment approach can induce metabolic vulnerability through multiple cancer cell targets. Here, we show a therapeutic effect by inducing nucleotide imbalance and apoptosis in triple negative breast cancer cells (TNBC), by treating with cytosolic thymidylate 5'-phosphohydrolase (CT).
View Article and Find Full Text PDFLipid droplets (LDs) are dynamic organelles that store neutral lipids during times of energy excess, such as after a meal. LDs serve as an energy reservoir during fasting and have a buffering capacity that prevents lipotoxicity. Autophagy and the autophagic machinery have been proposed to play a role in LD biogenesis, but the underlying molecular mechanism remains unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2020
The cytoplasmic peptide:N-glycanase (Ngly1) is a de-N-glycosylating enzyme that cleaves N-glycans from misfolded glycoproteins and is involved in endoplasmic reticulum-associated degradation. The recent discovery of NGLY1-deficiency, which causes severe systemic symptoms, drew attention to the physiological function of Ngly1 in mammals. While several studies have been carried out to reveal the physiological necessity of Ngly1, the semi-lethal nature of Ngly1-deficient animals made it difficult to analyze its function in adults.
View Article and Find Full Text PDFThere is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2).
View Article and Find Full Text PDFSelective autophagy ensures the removal of specific soluble proteins, protein aggregates, damaged mitochondria, and invasive bacteria from cells. Defective autophagy has been directly linked to metabolic disorders. However how selective autophagy regulates metabolism remains largely uncharacterized.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
June 2019
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders.
View Article and Find Full Text PDFAllergic conjunctivitis (AC) is one of the most common ocular surface diseases in the world. In AC, T helper type 2 (T2) immune responses play central roles in orchestrating inflammatory responses. However, the roles of lipid mediators in the onset and progression of AC remain to be fully explored.
View Article and Find Full Text PDFCRM197, which retains the same inflammatory and immune-stimulant properties as diphtheria toxin but with reduced toxicity, has been used as a safe carrier in conjugated vaccines. Expression of recombinant CRM197 in E. coli is limited due to formation of inclusion bodies.
View Article and Find Full Text PDFIrinotecan (CPT-11) is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking.
View Article and Find Full Text PDFBackground: The innate immune system plays a crucial role in the initiation and subsequent direction of adaptive immune responses, as well as in the removal of pathogens that have been targeted by an adaptive immune response.
Objective: L. was reported to have immunostimulatory properties that might protect against infectious diseases.
Biochem Biophys Res Commun
October 2018
Recent advances in mass spectrometry have expanded our knowledge of lipids and lipid metabolic pathways involved in many (patho)physiological events. Targeted and non-targeted lipidomics are powerful analytical strategies with distinct features, and a combination of these two approaches is often employed to maximize the coverage of lipid species detected and quantified in complex biological matrices. This review briefly summarizes the applications of targeted and non-targeted lipidomics, mainly focusing on electrospray ionization-liquid chromatography-tandem mass spectrometry (ESI-LC-MS/MS), along with recent technical advances in the field.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2018
Insulin resistance of peripheral muscle is implicated in the etiology of metabolic syndrome in obesity. Although accumulation of glycerolipids, such as triacylglycerol and diacylglycerol (DAG), in muscle contributes to insulin resistance in obese individuals, endurance-trained athletes also have higher glycerolipid levels but normal insulin sensitivity. We hypothesized that the difference in insulin sensitivity of skeletal muscle between athletes and obese individuals stems from changes in fatty acid composition of accumulated lipids.
View Article and Find Full Text PDFBackground: Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic, specifically proliferating Bifidobacilli and Lactobacilli and enhancing absorption of calcium and magnesium. The use of cellobiose 2-epimerase (CE) is considered an interesting alternative for industrial production of lactulose. CE reversibly converts D-glucose residues into D-mannose residues at the reducing end of unmodified β-1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose.
View Article and Find Full Text PDFDNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013) and its isogenic parent, Escherichia coli BL21(DE3), when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963). Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2015
A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E.
View Article and Find Full Text PDFBackground: Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis.
View Article and Find Full Text PDFSerine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity.
View Article and Find Full Text PDFN-Acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain N-acyl phosphatidylethanolamine (NAPE) lipase, but in vivo evidence for this functional assignment is lacking. Here, we describe ABHD4(-/-) mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain N-acyl phospholipids.
View Article and Find Full Text PDFIsomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp.
View Article and Find Full Text PDFThe bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA.
View Article and Find Full Text PDFLysophosphatidylinositol acyltransferase 1 (LPIAT1), also known as MBOAT7, is a phospholipid acyltransferase that selectively incorporates arachidonic acid (AA) into the sn-2 position of phosphatidylinositol (PI). We previously demonstrated that LPIAT1 regulates AA content in PI and plays a crucial role in brain development in mice. However, how LPIAT1 is regulated and which proteins function cooperatively with LPIAT1 are unknown.
View Article and Find Full Text PDFDietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference-based genetic screen using Caenorhabditis elegans, we recently cloned mboa-7 as an acyltransferase that selectively incorporates AA into PI.
View Article and Find Full Text PDFPhosphatidylinositol (PI) is a constituent of biomembranes and a precursor of all phosphoinositides (PIPs). A prominent characteristic of PI is that its sn-2 position is highly enriched in polyunsaturated fatty acids (PUFAs), such as arachidonic acid or eicosapentaenoic acid. However, the biological significance of PUFA-containing PI remains unknown.
View Article and Find Full Text PDFThymidine is an important precursor in antiviral drugs. We have enhanced thymidine production in E. coli by eliminating the repressors in the transcription of the gene coding for carbamoyl phosphate synthetase.
View Article and Find Full Text PDF