Publications by authors named "Hyeon Chang Lee"

Most gaze tracking systems are based on the pupil center corneal reflection (PCCR) method using near infrared (NIR) illuminators. One advantage of the PCCR method is the high accuracy it achieves in gaze tracking because it compensates for the pupil center position based on the relative position of corneal specular reflection (SR). However, the PCCR method only works for user head movements within a limited range, and its performance is degraded by the natural movement of the user's head.

View Article and Find Full Text PDF

With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days.

View Article and Find Full Text PDF

Gaze tracking systems usually utilize near-infrared (NIR) lights and NIR cameras, and the performance of such systems is mainly affected by external light sources that include NIR components. This is ascribed to the production of additional (imposter) corneal specular reflection (SR) caused by the external light, which makes it difficult to discriminate between the correct SR as caused by the NIR illuminator of the gaze tracking system and the imposter SR. To overcome this problem, a new method is proposed for determining the correct SR in the presence of external light based on the relationship between the corneal SR and the pupil movable area with the relative position of the pupil and the corneal SR.

View Article and Find Full Text PDF

In scalp skin examinations, it is difficult to find a previously treated region on a patient's scalp through images captured by a camera attached to a diagnostic device because the zoom lens on camera has a small field of view. Thus, doctors manually record the region on a chart or manually mark the region. However, this process is slow and inconveniences the patient.

View Article and Find Full Text PDF

Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs.

View Article and Find Full Text PDF

We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure.

View Article and Find Full Text PDF