Publications by authors named "Hyeokjung Kang"

A novel method was developed for fabricating nanopatterns embedded on micropillar-structured surfaces using nanowelding technology for security identification. Commonly used substrates, that is, polyethylene films, glass wafers, Si wafers, and curved surfaces, were employed and their characteristics were evaluated. Cr was deposited onto the selected substrate to strengthen the adhesion force, and an adhesive layer of ultra-thin metal was deposited on top of the Cr layer.

View Article and Find Full Text PDF

The increasing demand for smart fabrics has inspired extensive research in the field of nanomaterial-based wearable heaters. However, existing stretchable heaters employ polymer substrates, and hence require additional substrate-fabric bonding that can result in high thermal contact resistance. Moreover, currently used stretchable fabric heaters suffer from high sheet resistance and require complex fabrication processes.

View Article and Find Full Text PDF

Many recently developed nanotransfer printing techniques have received much attention because of their simplicity and low cost. In addition, such techniques are suitable for fabricating nano/microscale sensors, optical elements, and electrical devices. However, conventional nanotransfer printing methods are time-consuming, cannot be easily used over large areas or with several different materials, and are not suitable for repeatedly transferring various materials onto the same substrate or a curved surface.

View Article and Find Full Text PDF

Given the development of nano/microscale patterning techniques, efforts are being made to use them for fabricating metasurfaces. In particular, by using abrupt phase discontinuities, it is possible to generate holographic images from two-dimensional nanoscale-patterned metasurfaces. However, the fabrication of metasurface holograms is hindered by the high costs and long fabrication time involved, because the process requires expensive equipment such as that for electron-beam lithography.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskite light-emitting diodes (PeLEDs) are promising for next-generation optoelectronic devices due to their potential to achieve high color purity, efficiency, and brightness. Although the external quantum efficiency (EQE) of PeLEDs has recently surpassed 20%, various strategies are being pursued to increase EQE further and reduce the EQE gap compared to other LED technologies. A key point to further boost EQE of PeLEDs is linked to the high refractive index of the perovskite emissive layer, leading to optical losses of more than 70% of emitted photons.

View Article and Find Full Text PDF

Recently, metasurfaces composed of artificially fabricated subwavelength structures have shown remarkable potential for the manipulation of light with unprecedented functionality. Here, we first demonstrate a metasurface application to realize a compact near-eye display system for augmented reality with a wide field of view. A key component is a see-through metalens with an anisotropic response, a high numerical aperture with a large aperture, and broadband characteristics.

View Article and Find Full Text PDF

In this study, 8 in. wafer-scale flexible polarization-dependent color filters with Ag-TiO composite nanowires have been fabricated using nanoimprint and E-beam evaporation. The filters change their color via a simple rotation of the polarizer.

View Article and Find Full Text PDF