Publications by authors named "Hyeok-Jin Kwon"

On-demand drug delivery holds great promise to optimize pharmaceutical efficacy while minimizing the side effects. However, existing on-demand drug delivery systems often require complicated manufacturing processes that preclude their wide implementation of a broad range of drugs. In this work, we demonstrate the introduction of MXene-coated microneedles (MNs) into bioelectronics for digitally controllable gate-valve drug delivery.

View Article and Find Full Text PDF

Dystrophic epidermolysis bullosa (DEB) pruriginosa is a rare subtype of DEB characterized by multiple, violaceous, and severe pruritic lichenified nodules along with blisters. Here, we report the case of a Korean male who, since the age of 3 years, had multiple pruritic nodules with blisters on both lower extremities. Genetic testing is required to diagnose DEB pruriginosa because its clinical and histologic features are inconclusive.

View Article and Find Full Text PDF

Bullous pemphigoid (BP) is a chronic, autoimmune blistering disease that has concerning morbidity and mortality rates. Recently, several studies have focused on eosinophils due to their significant role in the pathogenesis of BP, considering that they are ubiquitous in the serum, tissue, and blister fluids of patients with BP. With this context, precision therapy that targets mediators of eosinophil activity could be a possible novel therapeutic strategy.

View Article and Find Full Text PDF

Fluorinated amorphous polymeric gate-insulating materials for organic thin-film transistors (OTFTs) not only form hydrophobic surfaces but also significantly reduce traps at the interface between the organic semiconductor and gate insulator. Therefore, these polymeric materials can enhance the OTFT's operation stability. In this study, we synthesized a new polymeric insulating material series composed of acrylate and fluorinated functional groups (with different ratios) named MBHCa-F and used them as gate insulators for OTFTs and in other applications.

View Article and Find Full Text PDF

Replacing environmentally damaging toxic halogenated/aromatic hydrocarbon organic solvents commonly used in solution-processed organic field-effect transistors with more sustainable green solvents has in recent years become a subject of various studies. In the current review, we summarize the properties of solvents used to process organic semiconductors and relate these properties to the toxicities of the solvents. And then, the research efforts to avoid using toxic organic solvents are reviewed, in particular the efforts involving molecular engineering of organic semiconductors achieved by introducing solubilizing side chains or substituents into the backbone and with synthetic strategies to asymmetrically deform the structure of the organic semiconductors and random copolymerization, as well as efforts involving the use of miniemulsion-based nanoparticles to process organic semiconductors.

View Article and Find Full Text PDF

Background/objectives: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a potentially life-threatening hypersensitive disorder. Cyclosporine has been indicated for adverse cutaneous drug eruptions. However, studies evaluating its clinical effectiveness in DRESS syndrome have been rare.

View Article and Find Full Text PDF

Background/purpose: The pathogenesis of chronic actinic dermatitis (CAD) is more complicated than other photodermatoses. However, the relationship between the clinical severity of CAD and the offending photocontact or contact allergens or both, and the correlations of CAD immunopathogenesis with the immunoregulatory molecules involved in adaptive immunity are yet to be investigated.

Methods: We performed phototesting with broad-spectrum ultraviolet (UV) B, UVA, and visible light to establish the presence of photosensitivity in 121 patients with CAD, together with photopatch and contact patch testing.

View Article and Find Full Text PDF

Solution-based printing has contributed to the facile deposition of various types of materials, including the building blocks of printed electronics. In particular, solution-processable organic semiconductors (OSCs) are regarded as one of the most fascinating candidates for the fabrication of printed electronics. Herein, we report electrohydrodynamic (EHD) jet-printed p- and n-type OSCs, namely 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) and 6,13-bis((triisopropylsilyl)ethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP), and their use as single-OSC layers and as OSC mixed p-n layers to fabricate solution-processed p-, n-, and ambipolar-type organic field-effect transistors (OFETs).

View Article and Find Full Text PDF

A π-conjugated polymer semiconductor, PBDTTTffPI, was synthesized for use as an organic semiconductor suitable for electrohydrodynamic (EHD) jet printing technology. Bulky alkylation of the polymer gave PBDTTTffPI good solubility in several organic solvents. EHD jet printing using PBDTTTffPI ink produced direct patterns of polymer semiconductors while maintaining smooth surface morphologies and crystal structures similar to those of spin-coated PBDTTTffPI films.

View Article and Find Full Text PDF

Polyimides (PIs) are widely utilized polymeric materials for high-temperature plastics, adhesives, dielectrics, nonlinear optical materials, flexible hard-coating films, and substrates for flexible electronics. PIs can be facilely mass-produced through factory methods, so the industrial application value is limitless. Herein, we synthesized a typical poly(amic acid) (PAA) precursor-based solution through an industrialized reactor for mass production and applied the prepared solution to form thin films of PI using thermal imidization.

View Article and Find Full Text PDF

Herein, printable polymer series containing different portions of cinnamate and perfluorinated phenyl functionalities, namely, polyperfluorostyrene--poly(vinylbenzyl cinnamates) (PFS--PVBCi (:)) copolymers, were synthesized and applied as gate dielectrics for organic thin-film transistors (OTFTs). The polymeric dielectrics were successfully printed via electrostatic force-assisted dispensing mode of electrohydrodynamic jet printing. The dielectric characteristics of the printed polymers, such as surface energy, dielectric constant, leakage current, atomic depth profiles, and deposited semiconducting layer characteristics, were clearly identified.

View Article and Find Full Text PDF

The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice gene was isolated and functionally characterized. The was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment.

View Article and Find Full Text PDF

Direct drawing techniques have contributed to the ease of patterning soft electronic materials, which are the building blocks of analog and digital integrated circuits. In parallel with the printing of semiconductors and electrodes, selective deposition of gate insulators (GI) is an equally important factor in simplifying the fabrication of integrated devices, such as NAND and NOR gates, and memory devices. This study demonstrates the fabrication of six types of printed GI layers (high/low- polymer and organic-inorganic hybrid material), which are utilized as GIs in organic field-effect transistors (OFETs), using the electrostatic-force-assisted dispensing printing technique.

View Article and Find Full Text PDF

The solution-processed deposition of metal-oxide semiconducting materials enables the fabrication of large-area and low-cost electronic devices by using printing technologies. Additionally, the simple patterning process of these types of materials become an important issue, as it can simplify the cost and process of fabricating electronics such as thin-film transistors (TFTs). In this study, using the electrohydrodynamic (EHD) jet printing technique, we fabricated directly patterned zinc-tin-oxide (ZTO) semiconductors as the active layers of TFTs.

View Article and Find Full Text PDF

Engineering the energy levels of organic conducting materials can be useful for developing high-performance organic field-effect transistors (OFETs), whose electrodes must be well controlled to facilitate easy charge carrier transport from the source to drain through an active channel. However, symmetric source and drain electrodes that have the same energy levels are inevitably unfavorable for either charge injection or charge extraction. In this study, asymmetric source and drain electrodes are simply prepared using the electrohydrodynamic (EHD)-jet printing technique after the careful work function engineering of organic conducting material composites.

View Article and Find Full Text PDF

Energy-efficient solution-processed organic field-effect transistors (OFETs) are highly sought after in the low-cost printing industry as well as for the manufacture of flexible and other next-generation devices. The fabrication of such electronic devices requires high-functioning insulating materials that are chemically and mechanically robust to avoid lowering insulating properties during the device fabrication process or utilization of devices. In this study, we report a facile, fluorinated, UV-assisted cross-linker series using a fluorophenyl azide (FPA), which reacts with the C-H groups of a conventional polymer.

View Article and Find Full Text PDF

The purpose of this study is to identify the effects of a stabilizer and matrix former in the development of a celecoxib dried nanosuspension (DNS) for high dissolution rate and drug loading. Tween 80 and Hydroxypropyl Methylcellulose (HPMC) were used as stabilizers in the bead-milling process and dextrin was used as the matrix former in the spray-drying. Various nanosuspensions (NS) were prepared by varying the ratio of HPMC and dextrin, and the physicochemical properties of each formulation were evaluated for particle size, morphology, drug loading, crystallinity, redispersibility, physical stability and dissolution rate.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is of great interest as a promising metal-free electrode material for future electronic devices. Several printing techniques have been developed to generate PEDOT:PSS patterns. In this study, we introduced a silicon-based hardener into PEDOT:PSS composites to prepare conductive ink for the purpose of fabricating solvent-resistant PEDOT:PSS composite patterns.

View Article and Find Full Text PDF

The purpose of this study is to develop a solid dispersion system with improved dissolution, absorption, and patient compliance of poorly water-soluble celecoxib (CXB). Instead of sodium lauryl sulfate (SLS), an anionic surfactant used in the marketed product (Celebrex), solubilization was performed using non-ionic surfactants with low toxicity. Cremophor RH40 (Cre-RH) was selected as the optimal solubilizer.

View Article and Find Full Text PDF

Objective: To evaluate the safety and efficacy of CT-P13 (Remsima(®)) in patients with inflammatory bowel disease (IBD) in South Korea.

Methods: This post-marketing study included patients with active moderate-to-severe Crohn's disease (CD), fistulizing CD (FCD), or moderate-to-severe ulcerative colitis (UC) treated with CT-P13 and followed for 30 weeks. Assessments included treatment-emergent adverse events (TEAEs) and disease-specific clinical response and remission.

View Article and Find Full Text PDF

Background/aims: Ulcerative colitis (UC) is a chronic disease that characteristically has a relapsing and remitting course. Probiotics might possibly induce remission in the treatment of active UC. Aims of our study were to assess the efficacy of VSL#3 on clinical response and colonic tissue cytokine concentration changes in patients with active UC.

View Article and Find Full Text PDF