Publications by authors named "Hyeok Jun Shin"

Adenosine and its receptors have emerged as alternative targets to control cellular functions for bone healing. However, the soluble delivery of adenosine has not proven effective because of its fast degradation in vivo. We therefore designed a stable coating of adenosine for biomaterial surfaces through polydopamine chemistry to control osteogenesis and osteoclastogenesis via A2bR signaling.

View Article and Find Full Text PDF

Unlabelled: Development of a bone-like 3D microenvironment with stem cells has always been intriguing in bone tissue engineering. In this study, we fabricated composite spheroids by combining functionalized fibers and human adipose-derived stem cells (hADSCs), which were fused to form a 3D mineralized tissue construct. We prepared fragmented poly (ι-lactic acid) (PLLA) fibers approximately 100 μm long by partial aminolysis of electrospun fibrous mesh.

View Article and Find Full Text PDF

Biological responses on biomaterials occur either on their surface or at the interface. Therefore, surface characterization is an essential step in the fabrication of ideal biomaterials for achieving effective control of the interaction between the material surface and the biological environment. Herein, we applied femtosecond laser ablation on electrospun fibrous scaffolds to fabricate various hierarchical patterns with a focus on the alignment of cells.

View Article and Find Full Text PDF

In a large tissue defect, faster migration of adjacent tissue toward the defect shortens the tissue regeneration time. Little has been explored on guiding of directional migration from all fronts of the defect boundary towards the center in tissue engineering. This paper demonstrates the effect of radially aligned fibrous scaffolds (RAFSs) coated with polydopamine in order to guide directional migration of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

Unlabelled: Extracellular matrix (ECM) microenvironment is critical for the viability, stemness, and differentiation of stem cells. In this study, we developed hybrid-spheroids of human turbinate mesenchymal stem cells (hTMSCs) by using extracellular matrix (ECM) mimicking fragmented fibers (FFs) for improvement of the viability and functions of hTMSCs. We prepared FFs with average size of 68.

View Article and Find Full Text PDF

A monolayer of endothelial cells (ECs) aligned along the direction of blood flow plays crucial roles in the regulation of anti-thrombogenic and pro-inflammatory reactions in the blood vessel wall. Thus, many researchers have attempted to mimic the aligned structure of ECs in vascular grafts or tissue-engineered blood vessels. In the present study, we fabricated micro-groove patterned nanofibers using a femtosecond laser ablation technique to recapitulate the densely organized anisotropic architecture of the endothelial layer.

View Article and Find Full Text PDF