Publications by authors named "Hyeok Jin Ko"

Autodisplay of a multimeric protein complex on a cell surface is limited by intrinsic factors such as the types and orientations of anchor modules. Moreover, improper folding of proteins to be displayed often hinders functional cell surface display. While overcoming these drawbacks, we ultimately extended the applicability of the autodisplay platform to the display of a protein complex.

View Article and Find Full Text PDF

GG (LGG) is a probiotic commonly used in fermented dairy products. In this study, RNA-sequencing was performed to unravel the effects of acid stress on LGG. The transcriptomic data revealed that the exposure of LGG to acid at pH 4.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers isolated an acid-tolerant yeast strain called Pichia kudriavzevii NG7 from grape skins, capable of thriving at pH 2.0 and 50°C.
  • They engineered this strain by replacing a gene to redirect its ethanol fermentation to produce d-lactic acid instead.
  • The final strain achieved high yields of d-lactic acid (135 g/L at pH 3.6 and 154 g/L at pH 4.7) with impressive productivity rates, also identifying a key regulator for acid tolerance through genome analysis.
View Article and Find Full Text PDF

NG7 is a multistress-tolerant yeast, isolated from grape skins. Here, we report the draft genome sequence of NG7, to understand its biochemical regulation and metabolic pathways.

View Article and Find Full Text PDF

A global transcriptome analysis of the natural succinate producer Actinobacillus succinogenes revealed that 353 genes were differentially expressed when grown on various carbon and energy sources, which were categorized into six functional groups. We then analyzed the expression pattern of 37 potential C -dicarboxylate transporters in detail. A total of six transporters were considered potential fumarate transporters: three transporters, Asuc_1999 (Dcu), Asuc_0304 (DASS), and Asuc_0270-0273 (TRAP), were constitutively expressed, whereas three others, Asuc_1568 (DASS), Asuc_1482 (DASS), and Asuc_0142 (Dcu), were differentially expressed during growth on fumarate.

View Article and Find Full Text PDF

Here, we report the draft genome sequence of the acid-tolerant yeast NP2, which was isolated from peach peels. This genome sequence will aid in the understanding of the organism's physiological properties as a potential producer of organic acids in acidic environments.

View Article and Find Full Text PDF

We report here the draft genome sequence of the lipolytic yeast SH-14, isolated from the compost of oil palm empty fruit bunches, and the identification of eight putative lipase genes. This genome information will provide the opportunity to produce potential lipases for a variety of industrial applications.

View Article and Find Full Text PDF

The catabolic fate of the major monomeric sugar of red macroalgae, 3,6-anhydro-L-galactose (AHG), is completely unknown in any organisms. AHG is not catabolized by ordinary fermentative microorganisms, and it hampers the utilization of red macroalgae as renewable biomass for biofuel and chemical production. In this study, metabolite and transcriptomic analyses of Vibrio sp.

View Article and Find Full Text PDF

Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252.

View Article and Find Full Text PDF

We used culture-dependent and culture-independent methods to extract previously undescribed plasmids harboring tetracycline (TC) resistance genes from activated sludge. The extracted plasmids were transformed into naturally competent Acinetobacter oleivorans DR1 to recover a non-Escherichia coli-based plasmid. The transformed cells showed 80-100-fold higher TC resistance than the wild-type strain.

View Article and Find Full Text PDF

BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3.

View Article and Find Full Text PDF

Plant expansin proteins induce plant cell wall extension and have the ability to extend and disrupt cellulose. In addition, these proteins show synergistic activity with cellulases during cellulose hydrolysis. BsEXLX1 originating from Bacillus subtilis is a structural homolog of a β-expansin produced by Zea mays (ZmEXPB1).

View Article and Find Full Text PDF

The metabolic fate of 3,6-anhydro-L-galactose (L-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize L-AHG as a sole carbon source.

View Article and Find Full Text PDF

A gene, alg7D, from Saccharophagus degradans, coding for a putative alginate lyase belonging to the family of polysaccharide lyase-7, was overexpressed in Escherichia coli. The properties of the recombinant Alg7D were characterized. The enzyme endolytically depolymerized alginate by β-elimination into oligo-alginates with degrees of polymerization of 2-5.

View Article and Find Full Text PDF

Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system.

View Article and Find Full Text PDF

In agarolytic microorganisms, α-neoagarobiose hydrolase (NABH) is an essential enzyme to metabolize agar because it converts α-neoagarobiose (O-3,6-anhydro-alpha-l-galactopyranosyl-(1,3)-d-galactose) into fermentable monosaccharides (d-galactose and 3,6-anhydro-l-galactose) in the agarolytic pathway. NABH can be divided into two biological classes by its cellular location. Here, we describe a structure and function of cytosolic NABH from Saccharophagus degradans 2-40 in a native protein and d-galactose complex determined at 2.

View Article and Find Full Text PDF

Verrucosispora maris AB-18-032 is a marine actinomycete that produces atrop-abyssomicin C and proximicin A, both of which have novel structures and modes of action. In order to understand the biosynthesis of these compounds, to identify further biosynthetic potential, and to facilitate rational improvement of secondary metabolite titers, we have sequenced the complete 6.7-Mb genome of Verrucosispora maris AB-18-032.

View Article and Find Full Text PDF

Lactobacillus acidophilus 30SC has been isolated from swine intestines and considered a probiotic strain for dairy products because of its ability to assimilate cholesterol and produce bacteriocins. Here, we report the complete genome sequence of Lactobacillus acidophilus 30SC (2,078,001 bp) exhibiting strong acid resistance and enhanced bile tolerance.

View Article and Find Full Text PDF

Eubacterium limosum KIST612 is an anaerobic acetogenic bacterium that uses CO as the sole carbon/energy source and produces acetate, butyrate, and ethanol. To evaluate its potential as a syngas microbial catalyst, we have sequenced the complete 4.3-Mb genome of E.

View Article and Find Full Text PDF

Molecular function of the expansin superfamily has been highlighted for cellulosic biomass conversion. In this report, we identified a new bacterial expansin subfamily by analysis of related bacterial sequences and biochemically examined a member of this new subfamily from Hahella chejuensis (HcEXLX2). Among the various complex polysaccharides tested, HcEXLX2 bound most efficiently to cellulose.

View Article and Find Full Text PDF