Selective perturbation of protein interactions with chemical compounds enables dissection and control of developmental processes. Differentiation of stomata, cellular valves vital for plant growth and survival, is specified by the basic-helix-loop-helix (bHLH) heterodimers. Harnessing a new amination reaction, we here report a synthesis, derivatization, target identification, and mode of action of an atypical doubly-sulfonylated imidazolone, Stomidazolone, which triggers stomatal stem cell arrest.
View Article and Find Full Text PDFpH-responsive spirocyclic cyanine dyes were designed and synthesized. The equilibrium constant for cyclization (p) could be rationally controlled by changing the nucleophilic moiety and the side chains. Encapsulation in polymeric micelles inhibited the H-aggregation of the dye, and the p could be shifted according to the amphiphilic polymer employed.
View Article and Find Full Text PDFMitochondrial DNA B Resour
June 2023
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition.
View Article and Find Full Text PDFFailures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during neural tube closure.
View Article and Find Full Text PDFMulticellular organisms develop specialized cell types to achieve complex functions of tissues and organs. The basic helix-loop-helix (bHLH) proteins act as master regulatory transcription factors of such specialized cell types. Plant stomata are cellular valves in the aerial epidermis for efficient gas exchange and water control.
View Article and Find Full Text PDFBackground: IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo.
View Article and Find Full Text PDFAutophagy plays an important role in maintaining tumor cell progression and survival in response to metabolic stress. Thus, the regulation of autophagy can be used as a strategy for anticancer therapy. Here, we report dutomycin (DTM) as a novel autophagy enhancer that eventually induces apoptosis due to excessive autophagy.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR)‑tyrosine kinase inhibitor (TKI), gefitinib, is an effective therapeutic drug used in the treatment of non‑small cell lung cancers (NSCLCs) harboring EGFR mutations. However, acquired resistance significantly limits the efficacy of EGFR‑TKIs and consequently, the current chemotherapeutic strategies for NSCLCs. It is, therefore, necessary to overcome this resistance.
View Article and Find Full Text PDFUnlabelled: Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth, but very little has been known about its characteristics and origin. Recently, cancer-derived exosome has been suggested to transdifferentiate CAFs, by a new mechanism of endothelial to mesenchymal transition (EndMT), initiating angiogenic processes and triggering metastatic evolution. However, an enabling tool in vitro is yet to be developed to investigate complicated procedures of the EndMT and the transdifferentiation under reconstituted tumor microenvironment.
View Article and Find Full Text PDFThe development of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) occurs by various mechanisms and appears to be almost inevitable, even in patients with lung cancer who initially respond well to EGFR-TKIs. Consequently, considerable efforts have been made to develop more effective EGFR-TKIs. Therefore, an understanding of the mechanisms behind TKI resistance is essential for improving EGFR-TKI therapeutic efficacy in non-small cell lung cancer (NSCLC) patients.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2017
Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood.
View Article and Find Full Text PDFObjective: Varying anatomic characteristics and clinical and radiologic manifestations are diagnostic challenges in the evaluation of the cerebral vein and of venous sinus diseases. The purpose of this article is to introduce bone subtraction CT venography and review normal variations and diseases involving the cerebral veins and venous sinuses.
Conclusion: Knowledge of the normal variations and pathologic findings will be helpful for the accurate diagnosis of diseases involving the cerebral venous system.