Publications by authors named "Hyeji Sim"

Light-driven energy conversion devices call for the atomic-level manipulation of defects associated with electronic states in solids. However, previous approaches to produce oxygen vacancy (V) as a source of sub-bandgap energy levels have hampered the precise control of the distribution and concentration of V. Here, a new strategy to spatially confine V at the homo-interfaces is demonstrated by exploiting the sequential growth of anatase TiO under dissimilar thermodynamic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • * Iso-valent titanium (Ti) dopants in supercooled vanadium oxide (VO) films enable MIT with minimal hysteresis and without altering the material's overall structure.
  • * The formation of local vanadium (V) dimers leads to a stable interface between insulating and metallic phases, significantly improving electronic switching speeds and device endurance.
View Article and Find Full Text PDF

The metal-insulator (MI) transition of vanadium dioxide (VO) is effectively modulated by oxygen vacancies, which decrease the transition temperature and insulating resistance. Oxygen vacancies in thin films can be driven by oxygen transport using electrochemical potential. This study delves into the role of crystallographic channels in VO in facilitating oxygen transport and the subsequent tuning of electrical properties.

View Article and Find Full Text PDF

The octahedral symmetry in ionic crystals can play a critical role in atomic nucleation and migration during solid-solid phase transformation. Similarly, octahedron distortion, which is characterized by Goldschmidt tolerance factor, strongly influences the exsolution kinetics in the perovskite lattice framework during high-temperature annealing. However, a fundamental study on manipulating the exsolution process by octahedron distortion is still lacking.

View Article and Find Full Text PDF

Electrical manipulation of the metal-insulator transition (MIT) in quantum materials has attracted considerable attention toward the development of ultracompact neuromorphic devices because of their stimuli-triggered transformations. VO is expected to undergo abrupt electronic phase transition by piezo strain near room temperature; however, the unrestricted integration of defect-free VO films on piezoelectric substrates is required to fully exploit this emerging phenomenon in oxide heterostructures. Here, we demonstrate the integration of single-crystalline VO films on highly lattice-mismatched PMN-PT piezoelectric substrates using a single-crystal TiO-nanomembrane (NM) template.

View Article and Find Full Text PDF

As an analogue of charged electron flows, the ionic flow could be controlled by the electronic band alignment due to the ambipolar nature of diffusion in the ionic crystal. Here, we demonstrate the active control of the anionic diffusion across heterointerfaces through remote electron doping in the capping layers. In contrast to the spontaneous ionic flux from the underlying VO layers to the undoped TiO capping layers, the activated Nb dopants in the TiO capping layers substantially restrict the ionic flux, despite identical growth conditions.

View Article and Find Full Text PDF

Programmable optoelectronic devices call for the reversible control of the photocarrier recombination process by in-gap states in oxide semiconductors. However, previous approaches to produce oxygen vacancies as a source of in-gap states in oxide semiconductors have hampered the reversible formation of oxygen vacancies and their related phenomena. Here, a new strategy to manipulate the 2D photoconductivity from perovskite stannates is demonstrated by exploiting spatially selective photochemical reaction under ultraviolet illumination at room temperature.

View Article and Find Full Text PDF

Unrestricted integration of single-crystal oxide films on arbitrary substrates has been of great interest to exploit emerging phenomena from transition metal oxides for practical applications. Here, we demonstrate the release and transfer of a freestanding single-crystalline rutile oxide nanomembranes to serve as an epitaxial template for heterogeneous integration of correlated oxides on dissimilar substrates. By selective oxidation and dissolution of sacrificial VO buffer layers from TiO/VO/TiO by HO, millimeter-size TiO single-crystalline layers are integrated on silicon without any deterioration.

View Article and Find Full Text PDF

Heterogeneous interfaces exhibit the unique phenomena by the redistribution of charged species to equilibrate the chemical potentials. Despite recent studies on the electronic charge accumulation across chemically inert interfaces, the systematic research to investigate massive reconfiguration of charged ions has been limited in heterostructures with chemically reacting interfaces so far. Here, we demonstrate that a chemical potential mismatch controls oxygen ionic transport across TiO/VO interfaces, and that this directional transport unprecedentedly stabilizes high-quality rutile TiO epitaxial films at the lowest temperature (≤ 150 °C) ever reported, at which rutile phase is difficult to be crystallized.

View Article and Find Full Text PDF

Electronic phase modulation based on hydrogen insertion/extraction is kinetically limited by the bulk hydrogen diffusion or surface exchange reaction, so slow hydrogen kinetics has been a fundamental challenge to be solved for realizing faster solid-state electrochemical switching devices. Here we accelerate electronic phase modulation that occurs by hydrogen insertion in VO through vertically aligned 2D defects induced by symmetry mismatch between epitaxial films and substrates. By using domain-matching epitaxial growth of monoclinic VO films with lattice rotation and twinning on hexagonal AlO substrates, the domain boundaries naturally align vertically; they provide a "highway" for hydrogen diffusion and surface exchange in VO films and overcome the limited rates of bulk diffusion and surface reaction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5mgb4828fn1t3v1dc048sf5l7ta1nhlp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once