Publications by authors named "Hyejeong R Kim"

The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics.

View Article and Find Full Text PDF

Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly.

View Article and Find Full Text PDF
Article Synopsis
  • * The consortium developed a central repository that brings together over 1,800 genomic data sets to enhance the understanding of zebrafish development.
  • * They identified 140,000 regulatory elements and explored their unique chromatin features, linking zebrafish data to mouse genomics for broader research implications.
View Article and Find Full Text PDF

Metastasising cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumours in the clinic. We aimed to clarify how vimentin regulates the motility of metastasising fibroblasts. STED super-resolution microscopy, live-cell imaging and quantitative proteomics revealed that oncogene-expressing and metastasising fibroblasts show a less-elongated cell shape, reduced cell spreading, increased cell migration speed, reduced directionality, and stronger coupling between these migration parameters compared to normal control cells.

View Article and Find Full Text PDF

pVHL is a tumor suppressor. The lack of its function leads to various tumors, among which ccRCC (clear cell renal cell carcinoma) has the most serious outcome due to its resistance to chemotherapies and radiotherapies. Although HIF promotes the progression of ccRCC, the precise mechanism by which the loss of VHL leads to tumor initiation remains unclear.

View Article and Find Full Text PDF

Angiogenesis requires co-ordination of multiple signalling inputs to regulate the behaviour of endothelial cells (ECs) as they form vascular networks. Vascular endothelial growth factor (VEGF) is essential for angiogenesis and induces downstream signalling pathways including increased cytosolic calcium levels. Here we show that transmembrane protein 33 (tmem33), which has no known function in multicellular organisms, is essential to mediate effects of VEGF in both zebrafish and human ECs.

View Article and Find Full Text PDF

Rationale: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown.

Objective: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease.

View Article and Find Full Text PDF

Significance: Shear stress controls multiple physiological processes in endothelial cells (ECs).

Recent Advances: The response of ECs to shear has been studied using a range of in vitro and in vivo models.

Critical Issues: This article describes some of the experimental techniques that can be used to study endothelial responses to shear stress.

View Article and Find Full Text PDF

The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular inflammation; high uniform shear stress prevents leukocyte recruitment to the vascular wall by reducing endothelial expression of adhesion molecules and other inflammatory proteins, whereas low oscillatory shear stress has the opposite effects.

View Article and Find Full Text PDF

The development of the different muscles within the somite is a complex process that involves the Hedgehog (Hh) signaling pathway. To specify the proper number of muscle cells and organize them spatially and temporally, the Hh signaling pathway needs to be precisely regulated at different levels, but only a few factors external to the pathway have been described. Here, we report for the first time the role of the STAR family RNA-binding protein Quaking A (QkA) in somite muscle development.

View Article and Find Full Text PDF

Background: In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh) signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish.

Results: Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway.

View Article and Find Full Text PDF