Publications by authors named "Hyebin Noh"

Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, μC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large μC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering.

View Article and Find Full Text PDF