MicroRNAs (miRNAs) serve as emerging biomarkers for a range of diseases, and their quantitative analysis draws increasing attention. Yet, current invasive methods limit continuous tracking within living cells. To overcome this, a nonenzymatic DNA-based nanoprobe is developed for dynamic, noninvasive miRNA tracking via live-cell imaging.
View Article and Find Full Text PDFRapid, sensitive, specific, and user-friendly microRNA (miRNA) assays are in high demand for point-of-care diagnosis. Target-catalyzed toehold-mediated strand displacement (TMSD) has received increasing attention as an enzyme-free molecular tool for DNA detection. However, the application of TMSD to miRNA targets is challenging because relatively weak DNA/RNA hybridization leads to failure in the subtle kinetic control of multiple hybridization steps.
View Article and Find Full Text PDFPhotochemical instability and reactivity of organic ultraviolet (UV) filters not only degrade the performance of sunscreen formulations but also generate toxic photodegradation products and reactive oxygen species (ROS). Although the encapsulation of organic UV filters into synthetic polymer particles has been widely investigated, synthetic plastics were recently banned for personal care and cosmetic products due to marine and coastal pollution issues. Here we present a plastic-free, photochemically stable and inactive UV filter platform based on chitosan-coated mesoporous silica microparticles, denoted 'mSOCPs', incorporating octyl methoxycinnamate (OMC) as a sunscreen agent.
View Article and Find Full Text PDFFast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Quantum dots (QDs) can serve as an attractive Förster resonance energy transfer (FRET) donor for DNA assay due to their excellent optical properties. However, the specificity and sensitivity of QD-based FRET analysis are prominently reduced by nonspecific DNA adsorption and poor colloidal stability during DNA hybridization, which hinders the practical applications of QDs as a biosensing platform. Here, we report subnanomolar FRET assay of DNA through the stabilization of DNA/QD interface using DNA-functionalized QDs with phosphorothioated single-stranded DNA (pt-ssDNA) as a multivalent ligand in an aqueous solution.
View Article and Find Full Text PDF