Gastric cancer (GC) is recognized as the fifth most prevalent malignant tumor worldwide. It is characterized by diverse clinical symptoms, treatment responses, and prognoses. In GC prognosis, the promotion of epithelial-mesenchymal transition (EMT) fosters cancer cell invasion and metastasis, thereby triggering the dissemination of tumor cells.
View Article and Find Full Text PDFMolecular-profiling-based cancer diagnosis has significant implications for predicting disease prognosis and selecting targeted therapeutic interventions. The analysis of cancer-derived extracellular vesicles (EVs) provides a noninvasive and sequential method to assess the molecular landscape of cancer. Here, we developed an all-in-one fusogenic nanoreactor (FNR) encapsulating DNA-fueled molecular machines (DMMs) for the rapid and direct detection of EV-associated microRNAs (EV miRNAs) in a single step.
View Article and Find Full Text PDFMonitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential.
View Article and Find Full Text PDFBreast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration.
View Article and Find Full Text PDFThis study demonstrated the potential of 50 nm PEGylated Si NPs for high-resolution Si MR imaging, emphasizing their biocompatibility and water dispersibility. The acquisition of Si MR images using the lowest reported dose after subcutaneous and intraperitoneal administration opens new avenues for future Si MR studies.
View Article and Find Full Text PDFArachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors.
View Article and Find Full Text PDFExosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring.
View Article and Find Full Text PDFAccurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short non-coding RNAs that play an important role in regulating gene expression. Since miRNAs are abnormally expressed in various cancers, they are considered to be promising biomarkers for early cancer diagnosis. However, the short length and strong sequence similarity among miRNAs make their reliable quantification very challenging.
View Article and Find Full Text PDFMagn Reson Imaging
November 2022
The potential use of alanine as an MRI contrast agent was investigated. The relaxation properties of alanine solutions were measured at 9.4 T.
View Article and Find Full Text PDFThe low therapeutic efficacy of conventional cancer chemotherapy has been associated with an immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs), which display an M2-like phenotype, are abundant in many tumors and facilitate tumor growth and resistance to therapy. Here, we show that poly(L-arginine) (PLR), a cationic poly(amino acid) can induce the polarization of macrophages into the tumor-suppressive M1 phenotype, .
View Article and Find Full Text PDFIn this study, we uncover a ligation-free DNA extension method in two adjacent fragmented probes, which are hybridized to target RNA, for developing a ligation-free nucleic acid amplification reaction. In this reaction, DNA elongation occurs from a forward probe to a phosphorothioated-hairpin probe in the presence of target RNA regardless of ligation. The second DNA elongation then occurs simultaneously at the nick site of the phosphorothioated probe and the self-priming region.
View Article and Find Full Text PDFBreast cancer is one of the most common cancers globally. Because the 5-year survival rate of breast cancer greatly increases when treated in its initial stage, the importance of early detection has been increasing. Herein, one-spot multiple breast cancer circulating microRNA (miRNA) detection via surface-enhanced Raman spectroscopy (SERS) with seed-mediated grown Ag nanopillars (SMGAPs) is described.
View Article and Find Full Text PDFSilicon particles have garnered attention as promising biomedical probes for hyperpolarized Si magnetic resonance imaging and spectroscopy. However, due to the limited levels of hyperpolarization for nanosized silicon particles, microscale silicon particles have primarily been the focus of dynamic nuclear polarization (DNP) applications, including magnetic resonance imaging (MRI). To address these current challenges, we developed a facile synthetic method for partially Si-enriched porous silicon nanoparticles (NPs) (160 nm) and examined their usability in hyperpolarized Si MRI agents with enhanced signals in spectroscopy and imaging.
View Article and Find Full Text PDFMetastasis attributed to approximately 90% of cancer-related deaths; hence, the detection of metastatic tumor-derived components in the blood assists in determining cancer recurrence and patient survival. Microfluidic-based sensors facilitate analysis of small fluid volumes and represent an accurate, rapid, and user-friendly method of field diagnoses. In this study, we have developed a microfluidic chip-based exosomal mRNA sensor (exoNA-sensing chip) for the one-step detection of exosomal ERBB2 in the blood by integrating a microfluidic chip and 3D-nanostructured hydrogels.
View Article and Find Full Text PDFMicroplastics (MPs) have been recently recognized as a global environmental threat and its exposure as a risk factor to human health. Health effects through MPs exposure have been recently reported, especially through oral route of exposure. Since MPs could be exposed to humans through routes other than oral, this study was designed to evaluate whether MPs exposed through the inhalation route could be delivered to fetal mice and exhibit systemic toxicity.
View Article and Find Full Text PDFMultipotent adult stem cells (MASCs) derived from Pluripotent stem cells (PSCs) have found widespread use in various applications, including regenerative therapy and drug screening. For these applications, highly pluripotent PSCs need to be selectively separated from those that show low pluripotency for reusage of PSCs, and MASCs need to be collected for further application. Herein, we developed immunomagnetic microfluidic integrated system (IM-MIS) for separation of stem cells depending on potency level.
View Article and Find Full Text PDFAs stem cells show great promise in regenerative therapy, stem cell-mediated therapeutic efficacy must be demonstrated through the migration and transplantation of stem cells into target disease areas at the pre-clinical level. In this study, we developed manganese-based magnetic nanoparticles with hollow structures (MnOHo) and modified them with the anti-human integrin β1 antibody (MnOHo-Ab) to enable the minimal-invasive monitoring of transplanted human stem cells at the pre-clinical level. Compared to common magnetic resonance imaging (MRI)-based stem cell monitoring systems that use pre-labeled stem cells with magnetic particles before stem cell injection, the MnOHo-Ab is a new technology that does not require stem cell modification to monitor the therapeutic capability of stem cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are important post-transcriptional gene regulators and can serve as potential biomarkers for many diseases. Most of the current miRNA detection techniques require purification from biological samples, amplification, labeling, or tagging, which makes quantitative analysis of clinically relevant samples challenging. Here we present a new strategy for the detection of miRNAs with uniformity over a large area based on signal amplification using enzymatic reactions and measurements using time-of-flight secondary ion mass spectrometry (ToF-SIMS), a sensitive surface analysis tool.
View Article and Find Full Text PDFBackground: Driver genes of GBM may be crucial for the onset of isocitrate dehydrogenase (IDH)-wildtype (WT) glioblastoma (GBM). However, it is still unknown whether the genes are expressed in the identical cluster of cells. Here, we have examined the gene expression patterns of GBM tissues and patient-derived tumorspheres (TSs) and aimed to find a progression-related gene.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood.
View Article and Find Full Text PDF