The correlation between copy number variation (CNV) and the susceptibility to systemic lupus erythematosus (SLE) has been reported for various immunity-related genes. However, the contribution of CNVs to SLE susceptibility awaits more investigation. To evaluate the copy numbers in immunity-related genes such as TNFAIP3, TNIP1, IL12B, TBX21 (T-bet), TLR7, C4A, C4B, CCL3L1, and CCL3L3, the modified real competitive polymerase chain reaction (mrcPCR) assay was employed, and the association between the copy numbers and SLE susceptibility was analyzed in 334 SLE patients and 338 controls.
View Article and Find Full Text PDFBackground: More than 11,000 laboratories and companies developed their own next-generation sequencing (NGS) for screening and diagnosis of various diseases including cancer. Although inconsistencies of mutation calls as high as 43% in databases such as GDSC (Genomics of Drug Sensitivity in Cancer) and CCLE (Cancer Cell Line Encyclopedia) have been reported, not many studies on the reasons for the inconsistencies have been published. Methods: Targeted-NGS analysis of 151 genes in 35 cell lines common to GDSC and CCLE was performed, and the results were compared with those from GDSC and CCLE wherein whole-exome- or highly-multiplex NGS were employed.
View Article and Find Full Text PDFBackground: Cancers with copy-gain drug-target genes are excellent candidates for targeted therapy. In order to search for new predictive marker genes, we investigated the correlation between sensitivity to targeted drugs and the copy gain of candidate target genes in NCI-60 cells.
Methods: For eight candidate genes showing copy gains in NCI-60 cells identified in our previous study, sensitivity to corresponding target drugs was tested on cells showing copy gains of the candidate genes.
Circulating tumor DNA (ctDNA) has emerged as a candidate biomarker for cancer screening. However, studies on the usefulness of ctDNA for postoperative recurrence monitoring are limited. The present study monitored ctDNA in postoperative blood by employing cancer-specific rearrangements.
View Article and Find Full Text PDF