This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.
View Article and Find Full Text PDFBiochar is considered a promising biosorbent for harmful organic pollutants in aqueous media. However, only a limited number of biochars derived from industrial sludges have been utilized due to their problematic high ash content and heavy metal leaching. In this study, a highly effective biochar was prepared as a superabsorbent for ciprofloxacin (CIP) from chemical manufacturing plant sludge via KCO-activated pyrolysis, and its CIP removal behavior was evaluated.
View Article and Find Full Text PDFUrea is a problematic pollutant in reclaimed water for ultrapure water (UPW) production. The sulfate radical-based advanced oxidation process (SR-AOP) has been recognized as an effective method for urea degradation. However, conventional metal-based catalysts for peroxymonosulfate (PMS) activation are unsuitable for UPW production due to issues related to metal ion leaching.
View Article and Find Full Text PDFBackground: This study aimed to retrospectively assess results of intracranial meningioma surgery with or without intraoperative neuromonitoring (IONM) in a single institution.
Methods: Two cohorts (a historical cohort and a monitoring cohort) were collected for the analysis. Before IONM was introduced, a total of 107 patients underwent intracranial meningioma operation without IONM from January 2000 to December 2008 by one neurosurgeon (historical cohort).
The ability to maintain functional hepatocytes has important implications for bioartificial liver development, cell-based therapies, drug screening, and tissue engineering. Several approaches can be used to restore hepatocyte function in vitro, including coating a culture substrate with extracellular matrix (ECM), encapsulating cells within biomimetic gels (Collagen- or Matrigel-based), or co-cultivation with other cells. This paper describes the use of bioactive heparin-based core-shell microcapsules to form and cultivate hepatocyte spheroids.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu over an extended time period is crucial to prevent toxicity.
View Article and Find Full Text PDFHydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel fabrication methods are desirable for stem cells for efficient encapsulation and to reduce adverse effects on the cells.
View Article and Find Full Text PDFLiver cultures may be used for disease modeling, testing therapies and predicting drug-induced injury. The complexity of the liver cultures has evolved from hepatocyte monocultures to co-cultures with non-parenchymal cells and finally to precision-cut liver slices. The latter culture format retains liver's native biomolecular and cellular complexity and therefore holds considerable promise for in vitro testing.
View Article and Find Full Text PDFThree-dimensional spheroid culture enhances cell-to-cell interactions among stem cells and promotes the expression of stem cell properties; however, subsequent retrieval and delivery of these cells remain a challenge. We fabricated a thermoresponsive fiber-based microwell scaffold by combining electrospinning and hydrogel micropatterning. The resultant scaffold appeared to facilitate the formation of cellular spheroids of uniform size and enabled the expression of more stem cell-secreting growth factor genes (, , , , and ), pluripotent stem cell-related genes ( and ), and adult epithelial stem cell-related genes (, , and ) than salivary gland stem cells in a monolayer culture (SGSC).
View Article and Find Full Text PDFNitrophenols(NPs) are highly toxic compounds that occur in various industrial effluents. Herein, we investigated Cu nanoparticle-loaded cellulose nanofibril (CNF/PEI-Cu) aerogels as a catalyst for degrading 4-nitrophenol (4NP) in the wastewater. Non-noble metal based low-cost catalyst material and easily scalable preparation method make CNF/PEI-Cu aerogel as an appropriate catalyst for practical application in 4NP wastewater treatment.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSC) hold considerable promise as a source of adult cells for treatment of diseases ranging from diabetes to liver failure. Some of the challenges that limit the clinical/translational impact of hPSCs are high cost and difficulty in scaling-up of existing differentiation protocols. In this paper, we sought to address these challenges through the development of bioactive microcapsules.
View Article and Find Full Text PDFThree-dimensional (3D) or spheroid cultures of human pluripotent stem cells (hPSCs) offer the benefits of improved differentiation outcomes and scalability. In this paper, we describe a strategy for the robust and reproducible formation of hPSC spheroids where a co-axial flow focusing device is utilized to entrap hPSCs inside core-shell microcapsules. The core solution contained single cell suspension of hPSCs and was made viscous by the incorporation of high molecular weight poly(ethylene glycol) (PEG) and density gradient media.
View Article and Find Full Text PDFHepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment , they tend to lose hepatic phenotype and function .
View Article and Find Full Text PDFCopper in ionic form (Cu) should be removed from wastewater because of its harmful effects on human health. Meanwhile, Cu-metal nanoparticles (Cu NPs) are widely used in various applications such as catalysts, optical materials, sensors, and antibacterial agents. Here, we demonstrated the recovery of Cu from wastewater and its subsequent transformation into Cu NPs, a value-added product, via continuous adsorption followed by chemical reduction by hydrazine.
View Article and Find Full Text PDF4-Nitrophenol (4-NP) is a hazardous aromatic compound widely used for various industries. Catalytic reduction of 4-NP using metal nanoparticles (NPs) is a highly effective method to treat 4-NP from waste effluent. Even though lots of methods have investigated to prepare efficient metal NPs composites, the nano and/or micro size of composites makes it hard to recover after wastewater treatment, limiting its practical use.
View Article and Find Full Text PDFRadioactive cesium (Cs) and strontium (Sr) contaminants in seawater have been a serious problem since the Fukushima accident in 2011 due to their long-term health risks. For the effective and simultaneous removal of radioactive cesium (Cs) and strontium (Sr) from seawater, a Prussian blue (PB)-immobilized alginate aerogel (PB-alginate aerogel) was fabricated and its adsorption performance was evaluated. PB nanoparticles were homogeneously dispersed in the three-dimensional porous alginate aerogel matrix, which enabled facile contact with seawater.
View Article and Find Full Text PDFHeavy metal contamination in wastewater is a serious problem due to its high toxicity. In this study, three-dimensional porous and flexible polyethylene imine grafted cellulose nanofibril aerogel (PEI@CNF aerogel) is synthesized as a highly efficient biosorbent for continuous treatment of wastewater containing copper (Cu). The synthesized PEI@CNF aerogel efficiently separates Cu from wastewater and exhibits outstanding selectivity for Cu in the presence of other metal ions.
View Article and Find Full Text PDFRecently, graphene oxide(GO) has gained much attention for heavy metal removal due to its high surface area and lots of functional groups on the surface. However, GO itself in powder form is far away from practical adsorbents because it remains dispersed in liquid phase which causes difficulty in the separation from effluent. In this study, GO/carboxymethyl cellulose nanofibril (CMCNF) composite fiber(CF) is developed as an efficient and durable adsorbent.
View Article and Find Full Text PDFIn this study, we synthesized a Prussian blue (PB)-embedded macroporous carboxymethyl cellulose nanofibril (CMCNF) membrane for facile cesium (Cs) removal. The PB was formed in situ at Fe sites on a CMCNF framework cross-linked using FeCl as a cross-linking agent. Cubic PB particles of size 5-20 nm were observed on the macroporous CMCNF membrane surface.
View Article and Find Full Text PDFBackground: Nonadherence to immunosuppressive therapy after renal transplantation is associated with poor graft outcomes. We aimed to evaluate whether the use of the Adhere4U mobile medication manager application could improve adherence among renal transplant recipients ≥1 year posttransplantation. Adhere4U can provide medication reminders, monitor medication use, and provide information on immunosuppressants.
View Article and Find Full Text PDFRising demand and elemental rarity requires the recycling of precious metals such as platinum group elements (PGMs). Recently, biosorption has been focused on the capability of recovering precious metals, but in practice, recycling is inefficient or far away from a closed-loop material system. Here we use a polyethylenimine (PEI)-grafted spun-fiber made of cellulose nanofibril (CNF) extracted from a tunicate as a biosorbent for PGMs.
View Article and Find Full Text PDFWeavable sensing fibers with superior mechanical strength and sensing functionality are crucial for the realization of wearable textile sensors. However, in the fabrication of previously reported wearable sensing fibers, additional processes such as reduction, doping, and coating were essential to satisfy both requirements. The sensing fibers should be continuously synthesized in a scalable process for commercial applications with high reliability and productivity, which was challenging.
View Article and Find Full Text PDF